Citation: | Please cite this article as: LIANG HY, LIU D, WANG H, BA ZQ, XIAO Y, LIU YL, WANG Y, YUAN JS. Pre-existing cardiometabolic comorbidities and survival of middle-aged and elderly non-small cell lung cancer patients. J Geriatr Cardiol 2023; 20(10): 737−747. DOI: 10.26599/1671-5411.2023.10.002 |
[1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66: 115−132. doi: 10.3322/caac.21338
|
[2] |
Shi JF, Wang L, Wu N, et al. Clinical characteristics and medical service utilization of lung cancer in China, 2005–2014: overall design and results from a multicenter retrospective epidemiologic survey. Lung Cancer 2019; 128: 91−100. doi: 10.1016/j.lungcan.2018.11.031
|
[3] |
Janssen-Heijnen ML, Smulders S, Lemmens VE, et al. Effect of comorbidity on the treatment and prognosis of elderly patients with non-small cell lung cancer. Thorax 2004; 59: 602−607. doi: 10.1136/thx.2003.018044
|
[4] |
Ambrogi V, Pompeo E, Elia S, et al. The impact of cardiovascular comorbidity on the outcome of surgery for stage I and II non-small-cell lung cancer. Eur J Cardiothorac Su rg 2003; 23: 811−817. doi: 10.1016/S1010-7940(03)00093-9
|
[5] |
Janssen-Heijnen ML, Schipper RM, Razenberg PP, et al. Prevalence of co-morbidity in lung cancer patients and its relationship with treatment: a population-based study. Lu ng Cancer 1998; 21: 105−113. doi: 10.1016/S0169-5002(98)00039-7
|
[6] |
Takenaka T, Katsura M, Shikada Y, et al. The impact of cardiovascular comorbidities on the outcome of surgery for non-small-cell lung cancer. Interact Cardiovasc Thorac Su rg 2013; 16: 270−274. doi: 10.1093/icvts/ivs489
|
[7] |
Lüscher TF. Tumours and the heart: common risk factors, chemotherapy, and radiation. Eur Heart J 2016; 37: 2737−2738. doi: 10.1093/eurheartj/ehw451
|
[8] |
Sase K, Fujisaka Y, Shoji M, et al. Cardiovascular complications associated with contemporary lung cancer treatments. Curr Treat Options Oncol 2021; 22: 71. doi: 10.1007/s11864-021-00869-6
|
[9] |
Sturgeon KM, Deng L, Bluethmann SM, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 2019; 40: 3889−3897. doi: 10.1093/eurheartj/ehz766
|
[10] |
Licker M, de Perrot M, Höhn L, et al. Perioperative mortality and major cardio-pulmonary complications after lung surgery for non-small cell carcinoma. Eur J Cardioth orac Surg 1999; 15: 314−319. doi: 10.1016/S1010-7940(99)00006-8
|
[11] |
Liu D, Ma Z, Yang J, et al. Prevalence and prognosis significance of cardiovascular disease in cancer patients: a population-based study. Aging (Albany NY) 2019; 11: 7948−7960. doi: 10.18632/aging.102301
|
[12] |
Su C, Zhou F, Shen J, et al. Treatment of elderly patients or patients who are performance status 2 (PS2) with advanced non-small cell lung cancer without epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations: still a daily challenge. Eur J Cancer 2017; 83: 266−278. doi: 10.1016/j.ejca.2017.07.002
|
[13] |
Caprario LC, Kent DM, Strauss GM. Effects of chemotherapy on survival of elderly patients with small-cell lung cancer: analysis of the SEER-medicare database. J Thorac Oncol 2013; 8: 1272−1281. doi: 10.1097/JTO.0b013e3182a007ba
|
[14] |
Borghaei H, Yim YM, Guerin A, et al. Severe adverse events impact overall survival and costs in elderly patients with advanced non-small cell lung cancer on second-line therapy. Lung Cancer 2018; 119: 112−119. doi: 10.1016/j.lungcan.2018.02.011
|
[15] |
Ettinger DS, Wood DE, Aisner DL, et al. NCCN guidelines insights: non-small cell lung cancer, version 2.2021. J Natl Compr Canc Netw 2021; 19: 254−266. doi: 10.6004/jnccn.2021.0013
|
[16] |
Herrero Rivera D, Nieto-Guerrero Gómez JM, Cacicedo Fernández de Bobadilla J, et al. Cardiovascular disease and survival in non-small cell lung cancer: a multicenter prospective assessment. Clin Transl Oncol 2019; 21: 1220−1230. doi: 10.1007/s12094-019-02047-5
|
[17] |
Kravchenko J, Berry M, Arbeev K, et al. Cardiovascular comorbidities and survival of lung cancer patients: medicare data based analysis. Lung Cancer 2015; 88: 85−93. doi: 10.1016/j.lungcan.2015.01.006
|
[18] |
Tammemagi CM, Neslund-Dudas C, Simoff M, et al. Impact of comorbidity on lung cancer survival. Int J Cancer 2003; 103: 792−802. doi: 10.1002/ijc.10882
|
[19] |
Banke A, Schou M, Videbaek L, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail 2016; 18: 260−266. doi: 10.1002/ejhf.472
|
[20] |
Kwak S, Kwon S, Lee SY, et al. Differential risk of incident cancer in patients with heart failure: a nationwide population-based cohort study. J Cardiol 2021; 77: 231−238. doi: 10.1016/j.jjcc.2020.07.026
|
[21] |
Hasin T, Gerber Y, Weston SA, et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol 2016; 68: 265−271. doi: 10.1016/j.jacc.2016.04.053
|
[22] |
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66: 271−289. doi: 10.3322/caac.21349
|
[23] |
Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979; 91: 710−717. doi: 10.7326/0003-4819-91-5-710
|
[24] |
Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869−2879. doi: 10.1002/cncr.11407
|
[25] |
D’Souza M, Nielsen D, Svane IM, et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur Heart J 2021; 42: 1621−1631. doi: 10.1093/eurheartj/ehaa884
|
[26] |
Anker MS, Coats AJS, Anker SD. Cardiac events associated with immune checkpoint inhibitor therapy: the devil is in the detail. Eur Heart J 2021; 42: 1637. doi: 10.1093/eurheartj/ehab063
|
[27] |
Corrales-Rodriguez L, Blais N. Lung cancer associated venous thromboembolic disease: a comprehensive review. Lung Cancer 2012; 75: 1−8. doi: 10.1016/j.lungcan.2011.07.004
|
[28] |
Su Y, Huo M, Hua L, et al. Association of venous thromboembolism and early mortality in patients with newly diagnosed metastatic non-small cell lung cancer. Cancer Ma nag Res 2021; 13: 4031−4040. doi: 10.2147/CMAR.S301088
|
[29] |
Hill H, Robinson M, Lu L, et al. Venous thromboembolism incidence and risk factors in non-small cell lung cancer patients receiving first-line systemic therapy. Thromb Res 2021; 208: 71−78. doi: 10.1016/j.thromres.2021.10.014
|
[30] |
Lee YG, Kim I, Lee E, et al. Risk factors and prognostic impact of venous thromboembolism in Asian patients with non-small cell lung cancer. Thromb Haemost 2014; 111: 1112−1120. doi: 10.1160/TH13-11-0956
|
[31] |
Chew HK, Davies AM, Wun T, et al. The incidence of venous thromboembolism among patients with primary lung cancer. J Thromb Haemost 2008; 6: 601−608. doi: 10.1111/j.1538-7836.2008.02908.x
|
[32] |
Nalluri SR, Chu D, Keresztes R, et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 2008; 300: 2277−2285. doi: 10.1001/jama.2008.656
|
[33] |
Crinò L, Dansin E, Garrido P, et al. Safety and efficacy of first-line bevacizumab-based therapy in advanced non-squamous non-small-cell lung cancer (SAiL, MO19390): a phase 4 study. Lancet Oncol 2010; 11: 733−740. doi: 10.1016/S1470-2045(10)70151-0
|
[34] |
Zhang Y, Xu J, Lou Y, et al. Pretreatment direct bilirubin and total cholesterol are significant predictors of overall survival in advanced non-small-cell lung cancer patients with EGFR mutations. Int J Cancer 2017; 140: 1645−1652. doi: 10.1002/ijc.30581
|
[35] |
Sok M, Ravnik J, Ravnik M. Preoperative total serum cholesterol as a prognostic factor for survival in patients with resectable non-small-cell lung cancer. Wien Klin Wochen schr 2009; 121: 314−317. doi: 10.1007/s00508-009-1169-8
|
[36] |
Li JR, Zhang Y, Zheng JL. Decreased pretreatment serum cholesterol level is related with poor prognosis in resectable non-small cell lung cancer. Int J Clin Exp Pathol 2015; 8: 11877−11883.
|
[37] |
Chi PD, Liu W, Chen H, et al. High-density lipoprotein cholesterol is a favorable prognostic factor and negatively correlated with C-reactive protein level in non-small cell lung carcinoma. PLoS One 2014; 9: e91080. doi: 10.1371/journal.pone.0091080
|
[38] |
Lv Y, Miao LY, Chen QF, et al. Monitoring of high-density lipoprotein cholesterol level is predictive of EGFR mutation and efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma. Onco Targets Ther 2016; 9: 461−468. doi: 10.2147/OTT.S96199
|
[39] |
Ma C, Wang X, Guo J, et al. Prognostic significance of preoperative serum triglycerides and high-density lipoproteins cholesterol in patients with non-small cell lung cancer: a retrospective study. Lipids Health Dis 2021; 20: 69. doi: 10.1186/s12944-021-01492-y
|
[40] |
Baracos VE, Martin L, Korc M, et al. Cancer-associated cachexia. Nat Rev Dis Primers 2018; 4: 17105. doi: 10.1038/nrdp.2017.105
|
[41] |
Irwin ME, Mueller KL, Bohin N, et al. Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 2011; 226: 2316−2328. doi: 10.1002/jcp.22570
|
[42] |
Hao B, Yu M, Sang C, et al. Dyslipidemia and non-small cell lung cancer risk in Chinese population: a case-control study. Lipids Health Dis 2018; 17: 278. doi: 10.1186/s12944-018-0925-z
|
[43] |
Li R, Liu B, Liu Y, et al. Elevated serum lipid level can serve as early signal for metastasis for non-small cell lung cancer patients: a retrospective nested case-control study. J Cancer 2020; 11: 7023−7031. doi: 10.7150/jca.48322
|
[44] |
YuPeng L, YuXue Z, PengFei L, et al. Cholesterol levels in blood and the risk of prostate cancer: a meta-analysis of 14 prospective studies. Cancer Epidemiol Biomarkers Prev 2015; 24: 1086−1093. doi: 10.1158/1055-9965.EPI-14-1329
|
[45] |
Fang Z, He M, Song M. Serum lipid profiles and risk of colorectal cancer: a prospective cohort study in the UK Biobank. Br J Cancer 2021; 124: 663−670. doi: 10.1038/s41416-020-01143-6
|
[46] |
Beeghly-Fadiel A, Khankari NK, Delahanty RJ, et al. A Mendelian randomization analysis of circulating lipid traits and breast cancer risk. Int J Epidemiol 2020; 49: 1117−1131. doi: 10.1093/ije/dyz242
|
[47] |
Johnson KE, Siewert KM, Klarin D, et al. The relationship between circulating lipids and breast cancer risk: a Mendelian randomization study. PLoS Med 2020; 17: e1003302. doi: 10.1371/journal.pmed.1003302
|