Citation: | Please cite this article as: YANG L, WANG WJ, XU C, BI T, LI YG, WANG SC, XU L. Novel fast FFR derived from coronary CT angiography based on static first-pass algorithm: a comparison study. J Geriatr Cardiol 2023; 20(1): 40−50. DOI: 10.26599/1671-5411.2023.01.002 |
[1] |
Hu P, Tang MY, Song WC, et al. Fractional Flow Reserve Guided Percutaneous Coronary Intervention Improves Clinical Outcome with Reduced Cost in Contemporary Clinical Practice. Chin Med J (Engl) 2015; 128: 2000−2005. doi: 10.4103/0366-6999.161341
|
[2] |
Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 2007; 244: 419−428. doi: 10.1148/radiol.2442061218
|
[3] |
Danad I, Szymonifka J, Twisk JWR, et al. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 2017; 38: 991−998.
|
[4] |
Min JK, Koo BK, Erglis A, et al. Usefulness of noninvasive fractional flow reserve computed from coronary computed tomographic angiograms for intermediate stenoses confirmed by quantitative coronary angiography. Am J Cardiol 2012; 110: 971−976. doi: 10.1016/j.amjcard.2012.05.033
|
[5] |
Nørgaard BL, Leipsic J, Gaur S, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. J Am Coll Cardiol 2014; 63: 1145−1155. doi: 10.1016/j.jacc.2013.11.043
|
[6] |
Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58: 1989−1997. doi: 10.1016/j.jacc.2011.06.066
|
[7] |
Lu MT, Ferencik M, Roberts RS, et al. Noninvasive FFR Derived From Coronary CT Angiography: Management and Outcomes in the PROMISE Trial. JACC Cardiovasc Imaging 2017; 10: 1350−1358. doi: 10.1016/j.jcmg.2016.11.024
|
[8] |
Ko BS, Cameron JD, Munnur RK, et al. Noninvasive CT-Derived FFR Based on Structural and Fluid Analysis: A Comparison With Invasive FFR for Detection of Functionally Significant Stenosis. JACC Cardiovasc Imaging 2017; 10: 663−673. doi: 10.1016/j.jcmg.2016.07.005
|
[9] |
Oishi A, Yagawa G. Computational mechanics enhanced by deep learning. Comput Methods Appl Mech Eng 2017; 327: 327−351. doi: 10.1016/j.cma.2017.08.040
|
[10] |
Kishi S, Giannopoulos AA, Tang A, et al. Fractional Flow Reserve Estimated at Coronary CT Angiography in Intermediate Lesions: Comparison of Diagnostic Accuracy of Different Methods to Determine Coronary Flow Distribution. Radiology 2018; 287: 76−84. doi: 10.1148/radiol.2017162620
|
[11] |
Narula S, Shameer K, Salem Omar AM, et al. Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography. J Am Coll Cardiol 2016; 68: 2287−2295. doi: 10.1016/j.jacc.2016.08.062
|
[12] |
Coenen A, Lubbers MM, Kurata A, et al. Coronary CT angiography derived fractional flow reserve: Methodology and evaluation of a point of care algorithm. J Cardiovasc Comput Tomogr 2016; 10: 105−113. doi: 10.1016/j.jcct.2015.12.006
|
[13] |
Coenen A, Kim YH, Kruk M, et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ Cardiovasc Imaging 2018; 11: e007217. doi: 10.1161/CIRCIMAGING.117.007217
|
[14] |
Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography. J Geriatr Cardiol 2019; 16: 42−48.
|
[15] |
Carson JM, Chakshu NK, Sazonov I, et al. Artificial intelligence approaches to predict coronary stenosis severity using non-invasive fractional flow reserve. Proc Inst Mech Eng H 2020; 234: 1337−1350. doi: 10.1177/0954411920946526
|
[16] |
Weigold WG, Abbara S, Achenbach S, et al. Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2011; 5: 136−144. doi: 10.1016/j.jcct.2011.04.004
|
[17] |
Sun Z, Ng CK, Xu L, et al. Coronary CT angiography in heavily calcified coronary arteries: Improvement of coronary lumen visualization and coronary stenosis assessment with image postprocessing methods. Medicine 2015; 94: e2148. doi: 10.1097/MD.0000000000002148
|
[18] |
Wang W, Yang L, Wang S, et al. An automated quantification method for the agatston coronary artery calcium score on coronary computed tomography angiography. Quant Imaging Med Surg 2022; 12: 1787−1799. doi: 10.21037/qims-21-775
|
[19] |
Seitun S, Castiglione Morelli M, Budaj I, et al. Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology. Rev Esp Cardiol (Engl Ed) 2016; 69: 188−200. doi: 10.1016/j.recesp.2015.10.021
|
[20] |
Seitun S, De Lorenzi C, Cademartiri F, et al. CT myocardial perfusion imaging: a new frontier in cardiac imaging. Biomed Res Int 2018; 2018: 7295460.
|
[21] |
Cademartiri F, Seitun S, Clemente A, et al. Myocardial blood flow quantification for evaluation of coronary artery disease by computed tomography. Cardiovasc Diagn Ther 2017; 7: 129−150. doi: 10.21037/cdt.2017.03.22
|
[22] |
Hanson EA, Sandmann C, Malyshev A, et al. Estimating the discretization dependent accuracy of perfusion in coupled capillary flow measurements. PLoS One 2018; 13: e0200521. doi: 10.1371/journal.pone.0200521
|
[23] |
Ishida M, Kitagawa K, Ichihara T, et al. Underestimation of myocardial blood flow by dynamic perfusion CT: explanations by two-compartment model analysis and limited temporal sampling of dynamic CT. J Cardiovasc Comput Tomogr 2016; 10: 207−214. doi: 10.1016/j.jcct.2016.01.008
|
[24] |
Mullani NA, Herbst RS, O’Neil RG, et al. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow. J Nucl Med 2008; 49: 517−523. doi: 10.2967/jnumed.107.048504
|
[25] |
Kellner E, Gall P, Günther M, et al. Blood tracer kinetics in the arterial tree. PLoS One 2014; 9: e109230. doi: 10.1371/journal.pone.0109230
|
[26] |
Carson JM, Pant S, Roobottom C, et al. Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies. Int J Numer Method Biomed Eng 2019; 35: e3235.
|
[27] |
Hindmarsh T. Elimination of water-soluble contrast media from the subarachnoid space. Investigation with computer tomography. Acta Radiol Suppl 1975; 346: 45−49.
|
[28] |
Updegrove A, Wilson NM, Merkow J, et al. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann Biomed Eng 2017; 45: 525−541. doi: 10.1007/s10439-016-1762-8
|
[29] |
Min JK, Berman DS, Budoff MJ, et al. Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic Computed Tomographic AngiOgraphy) study. J Cardiovasc Comput Tomogr 2011; 5: 301−309. doi: 10.1016/j.jcct.2011.08.003
|
[30] |
Lotfi A, Jeremias A, Fearon WF, et al. Expert consensus statement on the use of fractional flow reserve, intravascular ultrasound, and optical coherence tomography: a consensus statement of the Society of Cardiovascular Angiography and Interventions. Catheter Cardiovasc Interv 2014; 83: 509−518. doi: 10.1002/ccd.25222
|
[31] |
Hong C, Becker CR, Schoepf UJ, et al. Coronary artery calcium: absolute quantification in nonenhanced and contrast-enhanced multi-detector row CT studies. Radiology 2002; 223: 474−480. doi: 10.1148/radiol.2232010919
|
[32] |
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver-operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837−845. doi: 10.2307/2531595
|
[33] |
Tesche C, De Cecco CN, Albrecht MH, et al. Coronary CT angiography-derived fractional flow reserve. Radiology 2017; 285: 17−33.
|
[34] |
Li G, Wang H, Zhang M, et al. Prediction of 3D Cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning. Commun Biol 2021; 4: 99. doi: 10.1038/s42003-020-01638-1
|