Citation: | Please cite this article as: MOU YL, ZHAO R, LYU SY, ZHANG ZY, ZHU MF, LIU Q. Crocetin protects cardiomyocytes against hypoxia/reoxygenation injury by attenuating Drp1-mediated mitochondrial fission via PGC-1α. J Geriatr Cardiol 2023; 20(1): 68−82. DOI: 10.26599/1671-5411.2023.01.001 |
[1] |
Roe MT, Messenger JC, Weintraub WS, et al. Treatments, trends, and outcomes of acute myocardial infarction and percutaneous coronary intervention. J Am Coll Cardiol 2010; 56: 254−263. doi: 10.1016/j.jacc.2010.05.008
|
[2] |
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet 2017; 389: 197−210. doi: 10.1016/S0140-6736(16)30677-8
|
[3] |
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016; 133: e38−360.
|
[4] |
Bochaton T, Ovize M. Circadian rhythm and ischaemia-reperfusion injury. Lancet 2018; 391: 8−9. doi: 10.1016/S0140-6736(17)32177-3
|
[5] |
Zhao L, Cheng G, Choksi K, et al. Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion. Circ Res 2019; 125: 759−772. doi: 10.1161/CIRCRESAHA.119.315216
|
[6] |
Hausenloy DJ, Yellon DM. Targeting myocardial reperfusion injury-the search continues. N Engl J Med 2015; 373: 1073−1075. doi: 10.1056/NEJMe1509718
|
[7] |
Li Y, Chen B, Yang X, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation 2019; 140: 751−764. doi: 10.1161/CIRCULATIONAHA.118.039262
|
[8] |
Zhou H, Zhang Y, Hu S, et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res 2017: e12413.
|
[9] |
Hausenloy DJ, Botker HE, Engstrom T, et al. Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 2017; 38: 935−941.
|
[10] |
Petz A, Grandoch M, Gorski DJ, et al. Cardiac hyaluronan synthesis is critically involved in the cardiac macrophage response and promotes healing after ischemia reperfusion injury. Circ Res 2019; 124: 1433−1447. doi: 10.1161/CIRCRESAHA.118.313285
|
[11] |
Hausenloy DJ, Yellon DM. Combination therapy to target reperfusion injury after ST-segment-elevation myocardial infarction: a more effective approach to cardioprotection. Circulation 2017; 136: 904−906. doi: 10.1161/CIRCULATIONAHA.117.029859
|
[12] |
Ziegler M, Hohmann JD, Searle AK, et al. A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J 2018; 39: 111−116.
|
[13] |
Bi X, Zhang G, Wang X, et al. Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation. Circ Res 2018; 122: 1545−1554. doi: 10.1161/CIRCRESAHA.117.312641
|
[14] |
Zhang Y, Wang Y, Xu J, et al. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 2019; 66: e12542. doi: 10.1111/jpi.12542
|
[15] |
Zhou H, Toan S, Zhu P, et al. DNA-PKcs promotes cardiac ischemia reperfusion injury through mitigating BI-1-governed mitochondrial homeostasis. Basic Res Cardiol 2020; 115: 11. doi: 10.1007/s00395-019-0773-7
|
[16] |
Heusch G, Gersh BJ. The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 2017; 38: 774−784.
|
[17] |
Heusch G, Rassaf T. Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res 2016; 119: 676−695. doi: 10.1161/CIRCRESAHA.116.308736
|
[18] |
Umigai N, Murakami K, Ulit MV, et al. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine 2011; 18: 575−578. doi: 10.1016/j.phymed.2010.10.019
|
[19] |
Colapietro A, Mancini A, Vitale F, et al. Crocetin extracted from saffron shows antitumor effects in models of human Glioblastoma. Int J Mol Sci 2020: 21.
|
[20] |
Mori K, Torii H, Fujimoto S, et al. The effect of dietary supplementation of crocetin for myopia control in children: a randomized clinical trial. J Clin Med 2019; 8: 1179.
|
[21] |
Farkhondeh T, Samarghandian S, Samini F, et al. Protective effects of crocetin on depression-like behavior induced by immobilization in rat. CNS Neurol Disord Drug Targets 2018; 17: 361−369. doi: 10.2174/1871527317666180515120212
|
[22] |
Mizuma H, Tanaka M, Nozaki S, et al. Daily oral administration of crocetin attenuates physical fatigue in human subjects. Nutr Res 2009; 29: 145−150. doi: 10.1016/j.nutres.2009.02.003
|
[23] |
Song L, Kang C, Sun Y, et al. Crocetin inhibits lipopolysaccharide-induced inflammatory response in human umbilical vein endothelial cells. Cell Physiol Biochem 2016; 40: 443−452. doi: 10.1159/000452559
|
[24] |
Armellini R, Peinado I, Pittia P, et al. Effect of saffron (Crocus sativus L.) enrichment on antioxidant and sensorial properties of wheat flour pasta. Food Chem 2018; 254: 55−63.
|
[25] |
Abedimanesh S, Bathaie SZ, Ostadrahimi A, et al. The effect of crocetin supplementation on markers of atherogenic risk in patients with coronary artery disease: a pilot, randomized, double-blind, placebo-controlled clinical trial. Food Funct 2019; 10: 7461−7475. doi: 10.1039/C9FO01166H
|
[26] |
Zhang W, Li Y, Ge Z. Cardiaprotective effect of crocetin by attenuating apoptosis in isoproterenol induced myocardial infarction rat model. Biomed Pharmacother 2017; 93: 376−382. doi: 10.1016/j.biopha.2017.06.032
|
[27] |
Zhang Y, Geng J, Hong Y, et al. Orally administered crocin protects against cerebral ischemia/reperfusion injury through the metabolic transformation of crocetin by gut microbiota. Front Pharmacol 2019; 10: 440. doi: 10.3389/fphar.2019.00440
|
[28] |
Chang G, Chen Y, Zhang H, et al. Trans sodium crocetinate alleviates ischemia/reperfusion-induced myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2 signaling pathway. Int Immunopharmacol 2019; 71: 361−371. doi: 10.1016/j.intimp.2019.03.056
|
[29] |
Yang M, Mao G, Ouyang L, et al. Crocetin alleviates myocardial ischemia/reperfusion injury by regulating inflammation and the unfolded protein response. Mol Med Rep 2020; 21: 641−648.
|
[30] |
Hou T, Zhang R, Jian C, et al. NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res 2019; 29: 754−766. doi: 10.1038/s41422-019-0208-x
|
[31] |
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol 2020; 21: 204−224.
|
[32] |
Ong SB, Subrayan S, Lim SY, et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010; 121: 2012−2022. doi: 10.1161/CIRCULATIONAHA.109.906610
|
[33] |
Zhu H, Tan Y, Du W, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol 2021; 38: 101777. doi: 10.1016/j.redox.2020.101777
|
[34] |
Tsushima K, Bugger H, Wende AR, et al. Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 2018; 122: 58−73. doi: 10.1161/CIRCRESAHA.117.311307
|
[35] |
Livingston MJ, Wang J, Zhou J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 2019; 15: 2142−2162. doi: 10.1080/15548627.2019.1615822
|
[36] |
Bi J, Zhang J, Ren Y, et al. Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biol 2019; 20: 296−306. doi: 10.1016/j.redox.2018.10.019
|
[37] |
Rutkai I, Merdzo I, Wunnava SV, et al. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 2019; 39: 1056−1068. doi: 10.1177/0271678X17745028
|
[38] |
Corbalan JJ, Kitsis RN. RCAN1-calcineurin axis and the set-point for myocardial damage during ischemia-reperfusion. Circ Res 2018; 122: 796−798. doi: 10.1161/CIRCRESAHA.118.312787
|
[39] |
Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005; 6: 657−663. doi: 10.1038/nrm1697
|
[40] |
Ding M, Ning J, Feng N, et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res 2018; 64: e12447.
|
[41] |
Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res 2016; 118: 1808−1829. doi: 10.1161/CIRCRESAHA.116.306923
|
[42] |
Andrzejewski S, Klimcakova E, Johnson RM, et al. PGC-1 alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab 2017; 26: 778-787 e775.
|
[43] |
Ding M, Feng N, Tang D, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1alpha pathway. J Pineal Res 2018; 65: e12491. doi: 10.1111/jpi.12491
|
[44] |
Du J, Hang P, Pan Y, et al. Inhibition of miR-23a attenuates doxorubicin-induced mitochondria-dependent cardiomyocyte apoptosis by targeting the PGC-1alpha/Drp1 pathway. Toxicol Appl Pharmacol 2019; 369: 73−81. doi: 10.1016/j.taap.2019.02.016
|
[45] |
Ruiz-Meana M, Inserte J, Fernandez-Sanz C, et al. The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia. Basic Res Cardiol 2011; 106: 1259−1268. doi: 10.1007/s00395-011-0225-5
|
[46] |
Wang Y, Sun J, Liu C, et al. Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur J Pharmacol 2014; 741: 290−296. doi: 10.1016/j.ejphar.2014.07.052
|
[47] |
DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003; 348: 2656−2668. doi: 10.1056/NEJMra022567
|
[48] |
Civenni G, Bosotti R, Timpanaro A, et al. Epigenetic control of mitochondrial fission enables self-renewal of stem-like tumor cells in human prostate cancer. Cell Metab 2019; 30: 303-318 e306.
|
[49] |
Mukherjee UA, Ong SB, Ong SG, et al. Parkinson’s disease proteins: Novel mitochondrial targets for cardioprotection. Pharmacol Ther 2015; 156: 34−43. doi: 10.1016/j.pharmthera.2015.10.005
|
[50] |
Ji W, Wei S, Hao P, et al. Aldehyde dehydrogenase 2 has cardioprotective effects on myocardial ischaemia/reperfusion injury via suppressing mitophagy. Front Pharmacol 2016; 7: 101.
|
[51] |
Zhou H, Ren J, Toan S, et al. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev 2021; 66: 101250. doi: 10.1016/j.arr.2020.101250
|
[52] |
Kalia R, Wang RY, Yusuf A, et al. Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 2018; 558: 401−405. doi: 10.1038/s41586-018-0211-2
|
[53] |
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23: 299−314. doi: 10.1007/s10456-020-09720-2
|
[54] |
Tan Y, Mui D, Toan S, et al. SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury. Mol Ther Nucleic Acids 2020; 22: 696−707. doi: 10.1016/j.omtn.2020.09.013
|
[55] |
Chang X, Lochner A, Wang HH, et al. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Theranostics 2021; 11: 6766−6785. doi: 10.7150/thno.60143
|