Citation: | Please cite this article as: Elia A, Cannavo A, Gambino G, Cimini M, Ferrara N, Kishore R, Paolocci N, Rengo G. Aging is associated with cardiac autonomic nerve fiber depletion and reduced cardiac and circulating BDNF levels. J Geriatr Cardiol 2021; 18(7): 549−559. DOI: 10.11909/j.issn.1671-5411.2021.07.009 |
[1] |
Tosato M, Zamboni V, Ferrini A, et al. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2007; 2: 401−412.
|
[2] |
Abete P, Della Morte D, Mazzella F, et al. Lifestyle and prevention of cardiovascular disease in the elderly: an Italian perspective. Am J Geriatr Cardiol 2006; 15: 28−34. doi: 10.1111/j.1076-7460.2006.05285.x
|
[3] |
Ferrara N, Corbi G, Bosimini E, et al. Cardiac rehabilitation in the elderly: patient selection and outcomes. Am J Geriatr Cardiol 2006; 15: 22−27. doi: 10.1111/j.1076-7460.2006.05289.x
|
[4] |
Rengo F, Leosco D, Iacovoni A, et al. [Epidemiology and risk factors for heart failure in the elderly]. Ital Heart J 2004; 5 (Suppl 10): 9S–16S. [In Italian].
|
[5] |
Vasan RS, Benjamin EJ, Levy D. Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol 1995; 26: 1565−1574. doi: 10.1016/0735-1097(95)00381-9
|
[6] |
Di Bari M, Pozzi C, Cavallini MC, et al. The diagnosis of heart failure in the community. Comparative validation of four sets of criteria in unselected older adults: the ICARe Dicomano Study. J Am Coll Cardiol 2004; 19: 1601−1608.
|
[7] |
Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin 2012; 8: 143−164. doi: 10.1016/j.hfc.2011.08.011
|
[8] |
Ferrara N, Komici K, Corbi G, et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 2014; 4: 396.
|
[9] |
Zhang DY, Anderson AS. The sympathetic nervous system and heart failure. Cardiol Clin 2014; 32: 33−45. doi: 10.1016/j.ccl.2013.09.010
|
[10] |
Kreusser MM, Lehmann LH, Haass M, et al. Depletion of cardiac catecholamine stores impairs cardiac norepinephrine re-uptake by downregulation of the norepinephrine transporter. PLoS One 2017; 12: e0172070. doi: 10.1371/journal.pone.0172070
|
[11] |
Nikolaidis LA, Hentosz T, Doverspike A, et al. Catecholamine stimulation is associated with impaired myocardial O2 utilization in heart failure. Cardiovasc Res 2002; 53: 392−404. doi: 10.1016/S0008-6363(01)00490-4
|
[12] |
Jamali HK, Waqar F, Gerson MC. Cardiac autonomic innervation. J Nucl Cardiol 2017; 24: 1558−1570. doi: 10.1007/s12350-016-0725-7
|
[13] |
Crasset V, Mezzetti S, Antoine M, et al. Effects of aging and cardiac denervation on heart rate variability during sleep. Circulation 2001; 103: 84−88. doi: 10.1161/01.CIR.103.1.84
|
[14] |
Rengo G, Pagano G, Vitale DF, et al. Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure. Eur J Nucl Med Mol Imaging 2016; 43: 2392−2400. doi: 10.1007/s00259-016-3432-3
|
[15] |
Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging 2016; 60: 362−382.
|
[16] |
Asghar O, Arumugam P, Armstrong I, et al. Iodine-123 metaiodobenzylguanidine scintigraphy for the assessment of cardiac sympathetic innervation and the relationship with cardiac autonomic function in healthy adults using standardized methods. Nucl Med Commun 2017; 38: 44−50. doi: 10.1097/MNM.0000000000000608
|
[17] |
Patel TD, Jackman A, Rice FL, et al. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 2000; 25: 345−357. doi: 10.1016/S0896-6273(00)80899-5
|
[18] |
Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237: 1154−1162. doi: 10.1126/science.3306916
|
[19] |
Kermani P, Hempstead B. BDNF actions in the cardiovascular system: roles in development, adulthood and response to injury. Front Physiol 2019; 10: 455. doi: 10.3389/fphys.2019.00455
|
[20] |
Halade GV, Ma Y, Ramirez TA, et al. Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2013; 305: H1830−H1842. doi: 10.1152/ajpheart.00224.2013
|
[21] |
Hiltunen JO, Laurikainen A, Vakeva A, et al. Nerve growth factor and brain-derived neurotrophic factor mRNAs are regulated in distinct cell populations of rat heart after ischaemia and reperfusion. J Pathol 2001; 194: 247−253. doi: 10.1002/path.878
|
[22] |
Hang P, Zhao J, Cai B, et al. Brain-derived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents. Int J Biol Sci 2015; 11: 536−545. doi: 10.7150/ijbs.10754
|
[23] |
Cai D, Holm JM, Duignan IJ, et al. BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics 2006; 24: 191−197. doi: 10.1152/physiolgenomics.00165.2005
|
[24] |
Kreusser MM, Buss SJ, Krebs J, et al. Differential expression of cardiac neurotrophic factors and sympathetic nerve ending abnormalities within the failing heart. J Mol Cell Cardiol 2008; 44: 380−387. doi: 10.1016/j.yjmcc.2007.10.019
|
[25] |
Lee HW, Ahmad M, Wang HW, et al. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Exp Physiol 2017; 102: 314−328. doi: 10.1113/EP086049
|
[26] |
Cannavo A, Marzano F, Elia A, et al. Aldosterone jeopardizes myocardial insulin and β-adrenergic receptor signaling via G protein-coupled receptor kinase 2. Front Pharmacol 2019; 10: 888. doi: 10.3389/fphar.2019.00888
|
[27] |
Leosco D, Rengo G, Iaccarino G, et al. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res 2008; 78: 385−394. doi: 10.1093/cvr/cvm109
|
[28] |
Grabner A, Amaral AP, Schramm K, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 2015; 22: 1020−1032. doi: 10.1016/j.cmet.2015.09.002
|
[29] |
de Lucia C, Gambino G, Petraglia L, et al. Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure. Circ Heart Fail 2018; 11: e004153.
|
[30] |
Parisi V, Rengo G, Perrone-Filardi P, et al. Increased epicardial adipose tissue volume correlates with cardiac sympathetic denervation in patients with heart failure. Circ Res 2016; 118: 1244−1253. doi: 10.1161/CIRCRESAHA.115.307765
|
[31] |
Kishore R, Krishnamurthy P, Garikipati VN, et al. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J Mol Cell Cardiol 2015; 89(Pt B): 203−213.
|
[32] |
Chong CM, Kou MT, Pan P, et al. Discovery of a novel ROCK2 inhibitor with anti-migration effects via docking and high-content drug screening. Mol Biosyst 2016; 12: 2713−2721. doi: 10.1039/C6MB00343E
|
[33] |
Anversa P, Puntillo E, Nikitin P, et al. Effects of age on mechanical and structural properties of myocardium of Fischer 344 rats. Am J Physiol 1989; 256: H1440−H1449.
|
[34] |
Capasso JM, Palackal T, Olivetti G, et al. Severe myocardial dysfunction induced by ventricular remodeling in aging rat hearts. Am J Physiol 1990; 259: H1086−H1096.
|
[35] |
Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 2013; 113: 739−753. doi: 10.1161/CIRCRESAHA.113.300308
|
[36] |
Parashar R, Amir M, Pakhare A, et al. Age related changes in autonomic functions. J Clin Diagn Res 2016; 10: CC11−CC15. doi: 10.1111/crj.12171
|
[37] |
Esler MD, Thompson JM, Kaye D, et al. Effects of aging on the responsiveness of the human cardiac sympathetic nerves to stressors. Circulation 1995; 91: 351−358. doi: 10.1161/01.CIR.91.2.351
|
[38] |
Esler MD, Turner AG, Kaye DM, et al. Aging effects on human sympathetic neuronal function. Am J Physiol 1995; 268(1 Pt 2): R278−R285.
|
[39] |
Brodde OE, Konschak U, Becker K, et al. Cardiac muscarinic receptors decrease with age. In vitro and in vivo studies. J Clin Invest 1998; 101: 471−478. doi: 10.1172/JCI1113
|
[40] |
Lakatta EG. Deficient neuroendocrine regulation of the cardiovascular system with advancing age in healthy humans. Circulation 1993; 87: 631−636. doi: 10.1161/01.CIR.87.2.631
|
[41] |
Pfeifer MA, Weinberg CR, Cook D, et al. Differential changes of autonomic nervous system function with age in man. Am J Med 1983; 75: 249−258. doi: 10.1016/0002-9343(83)91201-9
|
[42] |
Korkushko OV, Shatilo VB, Plachinda YuI, et al. Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability. J Auton Nerv Syst 1991; 32: 191−198. doi: 10.1016/0165-1838(91)90113-H
|
[43] |
Poller U, Schäfers RF, Schmuck S, et al. Influence of atropine on the cardiovascular effects of noradrenaline and tyramine in elder volunteers. Naunyn Schmiedebergs Arch Pharmacol 1997; 356: 100−106. doi: 10.1007/PL00005016
|
[44] |
Jurgaitiene R, Pauziene N, Azelis V, et al. Morphometric study of age-related changes in the human intracardiac ganglia. Medicina (Kaunas) 2004; 40: 574−581.
|
[45] |
Ai H, Nishino H, Itoh T. Topographic organization of sensory afferents of Johnston's organ in the honeybee brain. J Comp Neurol 2007; 502: 1030−1046. doi: 10.1002/cne.21341
|
[46] |
Anversa P, Hiler B, Ricci R, et al. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. JAm Coll Cardiol 1986; 8: 1441−1448. doi: 10.1016/S0735-1097(86)80321-7
|
[47] |
Rakusan K, Poupa O. Capillaries and muscle fibres in the heart of old rats. Gerontologia 1964; 69: 107−112.
|
[48] |
Tomanek RJ. Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec 1970; 167: 55−62. doi: 10.1002/ar.1091670106
|
[49] |
Rengo G, Cannavo A, Liccardo D, et al. Vascular endothelial growth factor blockade prevents the beneficial effects of beta-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail 2013; 6: 1259−1267. doi: 10.1161/CIRCHEARTFAILURE.113.000329
|
[50] |
Barnes CA. Normal aging: regionally specific changes in hippocampal synaptic transmission. Trends Neurosci 1994; 17: 13−18. doi: 10.1016/0166-2236(94)90029-9
|
[51] |
Smith TD, Adams MM, Gallagher M, et al. Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci 2000; 20: 6587−6593. doi: 10.1523/JNEUROSCI.20-17-06587.2000
|
[52] |
Erickson CA, and Barnes CA. The neurobiology of memory changes in normal aging. Exp Gerontol 2003; 38: 61−69. doi: 10.1016/S0531-5565(02)00160-2
|
[53] |
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of aging. Nature 2000; 408: 239−247. doi: 10.1038/35041687
|
[54] |
Petzold A, Psotta L, Brigadski T, et al. Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 2015; 120: 52−60. doi: 10.1016/j.nlm.2015.02.009
|
[55] |
Almeida RD, Manadas B, Melo CV, et al. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Dier 2005; 12: 1329−1343. doi: 10.1038/sj.cdd.4401662
|
[56] |
Drapeau E, Mayo W, Aurousseau C, et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci USA 2003; 100: 14385−14390. doi: 10.1073/pnas.2334169100
|
[57] |
Pius-Sadowska E, Machalinski B. BDNF-A key player in the cardiovascular system. J Mol Cell Cardiol 2017; 110: 54−60. doi: 10.1016/j.yjmcc.2017.07.007
|
[58] |
Abcejo AJ, Sathish V, Smelter DF, et al. Brain-derived neurotrophic factor enhance calcium regulatory mechanisms in human airway smooth muscle. PLoS One 2012; 7: e44343. doi: 10.1371/journal.pone.0044343
|
[59] |
Fulgenzi G, Tomassoni-Ardori F, Babini L, et al. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB. T1 receptor activation. J Cell Biol 2015; 210: 1003−1012. doi: 10.1083/jcb.201502100
|
[60] |
Takashio, S, Sugiyama S, Yamamuro M, et al. Significance of low plasma levels of a brain-derived neurotrophic factor in patients with heart failure. Am J Cardiol 2015; 116: 243−249. doi: 10.1016/j.amjcard.2015.04.018
|
[61] |
Bahls M, Könemann S, Markus MRP, et al. Brain-derived neurotrophic factor is related with adverse cardiac remodeling and high NTproBNP. Sci Rep 2019; 9: 15421. doi: 10.1038/s41598-019-51776-8
|
[62] |
Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 2007; 17: 140−143. doi: 10.1016/j.tcm.2007.03.002
|
[63] |
Paneni F, Diaz Cañestro C, Libby P, et al. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 2017; 69: 1952−1967.
|
[64] |
Rana OR, Saygili E, Meyer C, et al. Regulation of nerve growth factor in the heart: the role of the calcineurin-NFAT pathway. J Mol Cell Cardiol 2009; 46: 568−578. doi: 10.1016/j.yjmcc.2008.12.006
|
[65] |
Meloni M, Caporali A, Graiani G, et al. Nerve growth factor promotes repair following myocardial infarction. Circ Res 2010; 106: 1275−1284. doi: 10.1161/CIRCRESAHA.109.210088
|
[66] |
Deyama S, Bang E, Kato T, et al. Neurotrophic and antidepressant actions of brain-derived neurotrophic factor require vascular endothelial growth factor. Biol Psychiatry 2019; 86: 143−152. doi: 10.1016/j.biopsych.2018.12.014
|
[67] |
Iemitsu M, Maeda S, Jesmin S, et al. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol 2006; 291: H1290−H1298. doi: 10.1152/ajpheart.00820.2005
|
[68] |
Rajinikanth Gogiraju, Magdalena L. Bochenek, Katrin Schäfer. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med 2019; 6: 20. doi: 10.3389/fcvm.2019.00020
|
![]() |
![]() |