ISSN 1671-5411 CN 11-5329/R
Volume 18 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Please cite this article as: Kurihara O, Takano M, Miyauchi Y, Mizuno K, Shimizu W. Vulnerable atherosclerotic plaque features: findings from coronary imaging. J Geriatr Cardiol 2021; 18(7): 577−584. DOI: 10.11909/j.issn.1671-5411.2021.07.005
Citation: Please cite this article as: Kurihara O, Takano M, Miyauchi Y, Mizuno K, Shimizu W. Vulnerable atherosclerotic plaque features: findings from coronary imaging. J Geriatr Cardiol 2021; 18(7): 577−584. DOI: 10.11909/j.issn.1671-5411.2021.07.005

Vulnerable atherosclerotic plaque features: findings from coronary imaging

doi: 10.11909/j.issn.1671-5411.2021.07.005
More Information
  • Corresponding author:
  • Available Online: 2021-06-08
  • Publish Date: 2021-07-28
  • Pathological studies have suggested that features of vulnerable atherosclerotic plaques likely to progress and lead to acute cardiovascular events have specific characteristics. Given the progress of intravascular coronary imaging technology, some large prospective studies have detected features of vulnerable atherosclerotic plaques using these imaging modalities. However, the rate of cardiovascular events, such as acute coronary syndrome, has been found to be considerably reduced in the limited follow-up period available in the statin era. Additionally, not all disrupted plaques lead to thrombus formation with clinical presentation. If sub-occlusive or occlusive thrombus formation does not occur, a thrombus on a disrupted plaque will organize without any symptoms, forming a “healed plaque”. Although vulnerable plaque detection using intracoronary imaging is focused on “thin-cap fibroatheroma” leading to plaque rupture, superficial plaque erosion is increasingly recognized; however, the underlying mechanism of thrombus formation on eroded plaques is not well understood. One of intravascular imaging, optical coherence tomography (OCT) has the highest image resolution and has enabled detailed characterization of the plaque in vivo. Here, we reviewed the status and limitations of intravascular imaging in terms of detecting vulnerable plaque through mainly OCT studies. We suggested that vulnerable plaque should be reconsidered in terms of eroded plaque and healed plaque and that both plaque and circulating blood should be assessed in greater detail accordingly.
  • loading
  • [1]
    Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989; 79: 733−743. doi: 10.1161/01.CIR.79.4.733
    Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262−1275. doi: 10.1161/01.ATV.20.5.1262
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13−C18. doi: 10.1016/j.jacc.2005.10.065
    Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 1992; 85: I19−124.
    Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013; 62: 1748−1758. doi: 10.1016/j.jacc.2013.05.071
    Eisen A, Giugliano RP, Braunwald E. Updates on acute coronary syndrome: a review. JAMA Cardiol 2016; 1: 718−730. doi: 10.1001/jamacardio.2016.2049
    Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664−1072. doi: 10.1161/01.CIR.0000087480.94275.97
    Fuster V. Elucidation of the role of plaque instability and rupture in acute coronary events. Am J Cardiol 1995; 76: 24C−33C. doi: 10.1016/S0002-9149(99)80467-6
    Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001; 103: 934−940. doi: 10.1161/01.CIR.103.7.934
    Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 1999; 82: 265−268. doi: 10.1136/hrt.82.3.265
    Kramer MC, Rittersma SZ, de Winter RJ, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 2010; 55: 122−132. doi: 10.1016/j.jacc.2009.09.007
    Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004; 90: 1385−1391. doi: 10.1136/hrt.2004.041798
    Otsuka F, Joner M, Prati F, et al. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 2014; 11: 379−389. doi: 10.1038/nrcardio.2014.62
    Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276−1282. doi: 10.1056/NEJM199705013361802
    Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114: 1852−1866. doi: 10.1161/CIRCRESAHA.114.302721
    Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013; 61: 1041−1051. doi: 10.1016/j.jacc.2012.10.054
    Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001; 16: 285−292. doi: 10.1097/00001573-200109000-00006
    Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226−235. doi: 10.1056/NEJMoa1002358
    Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019; 394: 1629−1637. doi: 10.1016/S0140-6736(19)31794-5
    Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J 2020; 41: 383−391.
    Pekkanen J, Linn S, Heiss G, et al. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med 1990; 322: 1700−1707. doi: 10.1056/NEJM199006143222403
    Hartmann M, von Birgelen C, Mintz GS, et al. Relation between plaque progression and low-density lipoprotein cholesterol during aging as assessed with serial long-term (> or =12 months) follow-up intravascular ultrasound of the left main coronary artery. Am J Cardiol 2006; 98: 1419−1423. doi: 10.1016/j.amjcard.2006.06.042
    Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis 2015; 242: 490−495. doi: 10.1016/j.atherosclerosis.2015.08.005
    Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383−1389.
    Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335: 1001−1009. doi: 10.1056/NEJM199610033351401
    Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195−2207. doi: 10.1056/NEJMoa0807646
    Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001; 104: 387−392. doi: 10.1161/hc2901.093188
    Takano M, Mizuno K, Yokoyama S, et al. Changes in coronary plaque color and morphology by lipid-lowering therapy with atorvastatin: serial evaluation by coronary angioscopy. J Am Coll Cardiol 2003; 42: 680−686. doi: 10.1016/S0735-1097(03)00770-8
    Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis 2009; 202: 491−497. doi: 10.1016/j.atherosclerosis.2008.05.014
    Kurihara O, Kim HO, Russo M, et al. Relation of low-density lipoprotein cholesterol level to plaque rupture. Am J Cardiol 2020; 134: 48−54. doi: 10.1016/j.amjcard.2020.08.016
    Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2019; 39: e1−e9. doi: 10.1161/ATV.0000000000000077
    Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014; 384: 626−635. doi: 10.1016/S0140-6736(14)61177-6
    Varbo A, Benn M, Tybjaerg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013; 61: 427−436. doi: 10.1016/j.jacc.2012.08.1026
    Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979; 60: 473−485. doi: 10.1161/01.CIR.60.3.473
    Karpe F. Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 1999; 246: 341−355. doi: 10.1046/j.1365-2796.1999.00548.x
    Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb 2009; 16: 145−154. doi: 10.5551/jat.E598
    Sakai N, Uchida Y, Ohashi K, et al. Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res 2003; 44: 1256−1262. doi: 10.1194/jlr.M300090-JLR200
    Kurihara O, Okajima F, Takano M, et al. Postprandial hyperchylomicronemia and thin-cap fibroatheroma in nonculprit lesions. Arterioscler Thromb Vasc Biol 2018; 38: 1940−1947. doi: 10.1161/ATVBAHA.118.311245
    Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 2017; 14: 21−29. doi: 10.1038/nrcardio.2016.166
    Kolodgie FD, Burke AP, Wight TN, Virmani R. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr Opin Lipidol 2004; 15: 575−582. doi: 10.1097/00041433-200410000-00012
    Kurihara O, Takano M, Kakuta T, et al. Determinants of ST-segment elevation myocardial infarction as clinical presentation of acute coronary syndrome. J Thromb Thrombolysis 2021; 51: 1026−1035. doi: 10.1007/s11239-020-02281-7
    Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002; 22: 1642−1648. doi: 10.1161/01.ATV.0000034021.92658.4C
    Partida RA, Libby P, Crea F, Jang IK. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J 2018; 39: 2070−2076. doi: 10.1093/eurheartj/ehx786
    Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J 2015; 36: 2984−2987.
    Peiffer V, Sherwin SJ, Weinberg PD. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 2013; 99: 242−250. doi: 10.1093/cvr/cvt044
    Thondapu V, Mamon C, Poon EKW, et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc Res 2020. Published online first: Aug 24, 2020. DOI: 10.1093/cvr/cvaa251.
    Yamamoto E, Yonetsu T, Kakuta T, et al. Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes. J Am Heart Assoc 2019; 8: e012322.
    Kurihara O, Takano M, Yamamoto E, et al. Seasonal variations in the pathogenesis of acute coronary syndromes. J Am Heart Assoc 2020; 9: e015579.
    Kurihara O, Takano M, Soeda T, et al. Degree of luminal narrowing and composition of thrombus in plaque erosion. J Thromb Thrombolysis 2021; 51: 143−150. doi: 10.1007/s11239-020-02159-8
    Barua RS and Ambrose JA. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler Thromb Vasc Biol 2013; 33: 1460−1467. doi: 10.1161/ATVBAHA.112.300154
    Sugiyama T, Yamamoto E, Fracassi F, et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv 2019; 12: 531−540. doi: 10.1016/j.jcin.2018.12.013
    Mori H, Torii S, Kutyna M, et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging 2018; 11: 127−142. doi: 10.1016/j.jcmg.2017.10.012
    Kataoka Y, Puri R, Hammadah M, et al. Spotty calcification and plaque vulnerability in vivo: frequency-domain optical coherence tomography analysis. Cardiovasc Diagn Ther 2014; 4: 460−469.
    Mizukoshi M, Kubo T, Takarada S, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 2013; 112: 34−40. doi: 10.1016/j.amjcard.2013.02.048
    Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis 2015; 238: 220−230. doi: 10.1016/j.atherosclerosis.2014.12.011
    Bittencourt MS and Cerci RJ. Statin effects on atherosclerotic plaques: regression or healing? BMC Med 2015; 13: 260. doi: 10.1186/s12916-015-0499-9
    Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 2014; 311: 271−278. doi: 10.1001/jama.2013.282535
    Vergallo R and Crea F. Atherosclerotic plaque healing. N Engl J Med 2020; 383: 846−857. doi: 10.1056/NEJMra2000317
    Crea F and Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol 2013; 61: 1−11.
    Pedicino D, Vinci R, Giglio AF, et al. Alterations of hyaluronan metabolism in acute coronary syndrome: implications for plaque erosion. J Am Coll Cardiol 2018; 72: 1490−1503. doi: 10.1016/j.jacc.2018.06.072
    Okafor ON and Gorog DA. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J Am Coll Cardiol 2015; 65: 1683−1699. doi: 10.1016/j.jacc.2015.02.040
    Kanji R, Kubica J, Navarese EP and Gorog DA. Endogenous fibrinolysis-relevance to clinical thrombosis risk assessment. Eur J Clin Invest 2020: e13471.
    Shimokado A, Matsuo Y, Kubo T, et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis 2018; 275: 35−42. doi: 10.1016/j.atherosclerosis.2018.05.025
    Fracassi F, Crea F, Sugiyama T, et al. Healed culprit plaques in patients with acute coronary syndromes. J Am Coll Cardiol 2019; 73: 2253−2263.
    Wang C, Hu S, Wu J, et al. Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina: an in vivo OCT and IVUS study. EuroIntervention 2019; 15: e771−e778. doi: 10.4244/EIJ-D-18-01175
    Vergallo R, Porto I, D'Amario D, et al. Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared With Patients With Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study. JAMA Cardiol 2019; 4: 321−329. doi: 10.1001/jamacardio.2019.0275
    Araki M, Yonetsu T, Kurihara O, et al. Predictors of Rapid Plaque Progression: An Optical Coherence Tomography Study. JACC Cardiovasc Imaging. Published online first: Sep 29, 2020. DOI: 10.1016/j.jcmg.2020.08.014.
    Kurihara O, Russo M, Kim HO, et al. Clinical significance of healed plaque detected by optical coherence tomography: a 2-year follow-up study. J Thromb Thrombolysis 2020; 50: 895−902. doi: 10.1007/s11239-020-02076-w
    Kurihara O, Takano M, Araki M, et al. Residual thrombus following plaque disruption contributes to rapid plaque progression: in-vivo serial optical coherence tomography imaging. Coron Artery Dis. Published online first: Jan 18, 2021. DOI: 10.1097/MCA.0000000000001009.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (818) PDF downloads(119) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint