Citation: | Please cite this article as: Kurihara O, Takano M, Miyauchi Y, Mizuno K, Shimizu W. Vulnerable atherosclerotic plaque features: findings from coronary imaging. J Geriatr Cardiol 2021; 18(7): 577−584. DOI: 10.11909/j.issn.1671-5411.2021.07.005 |
[1] |
Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 1989; 79: 733−743. doi: 10.1161/01.CIR.79.4.733
|
[2] |
Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262−1275. doi: 10.1161/01.ATV.20.5.1262
|
[3] |
Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13−C18. doi: 10.1016/j.jacc.2005.10.065
|
[4] |
Davies MJ. Anatomic features in victims of sudden coronary death. Coronary artery pathology. Circulation 1992; 85: I19−124.
|
[5] |
Jia H, Abtahian F, Aguirre AD, et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013; 62: 1748−1758. doi: 10.1016/j.jacc.2013.05.071
|
[6] |
Eisen A, Giugliano RP, Braunwald E. Updates on acute coronary syndrome: a review. JAMA Cardiol 2016; 1: 718−730. doi: 10.1001/jamacardio.2016.2049
|
[7] |
Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003; 108: 1664−1072. doi: 10.1161/01.CIR.0000087480.94275.97
|
[8] |
Fuster V. Elucidation of the role of plaque instability and rupture in acute coronary events. Am J Cardiol 1995; 76: 24C−33C. doi: 10.1016/S0002-9149(99)80467-6
|
[9] |
Burke AP, Kolodgie FD, Farb A, et al. Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 2001; 103: 934−940. doi: 10.1161/01.CIR.103.7.934
|
[10] |
Mann J, Davies MJ. Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 1999; 82: 265−268. doi: 10.1136/hrt.82.3.265
|
[11] |
Kramer MC, Rittersma SZ, de Winter RJ, et al. Relationship of thrombus healing to underlying plaque morphology in sudden coronary death. J Am Coll Cardiol 2010; 55: 122−132. doi: 10.1016/j.jacc.2009.09.007
|
[12] |
Kolodgie FD, Virmani R, Burke AP, et al. Pathologic assessment of the vulnerable human coronary plaque. Heart 2004; 90: 1385−1391. doi: 10.1136/hrt.2004.041798
|
[13] |
Otsuka F, Joner M, Prati F, et al. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 2014; 11: 379−389. doi: 10.1038/nrcardio.2014.62
|
[14] |
Burke AP, Farb A, Malcom GT, et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997; 336: 1276−1282. doi: 10.1056/NEJM199705013361802
|
[15] |
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114: 1852−1866. doi: 10.1161/CIRCRESAHA.114.302721
|
[16] |
Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013; 61: 1041−1051. doi: 10.1016/j.jacc.2012.10.054
|
[17] |
Kolodgie FD, Burke AP, Farb A, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001; 16: 285−292. doi: 10.1097/00001573-200109000-00006
|
[18] |
Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226−235. doi: 10.1056/NEJMoa1002358
|
[19] |
Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019; 394: 1629−1637. doi: 10.1016/S0140-6736(19)31794-5
|
[20] |
Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J 2020; 41: 383−391.
|
[21] |
Pekkanen J, Linn S, Heiss G, et al. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med 1990; 322: 1700−1707. doi: 10.1056/NEJM199006143222403
|
[22] |
Hartmann M, von Birgelen C, Mintz GS, et al. Relation between plaque progression and low-density lipoprotein cholesterol during aging as assessed with serial long-term (> or =12 months) follow-up intravascular ultrasound of the left main coronary artery. Am J Cardiol 2006; 98: 1419−1423. doi: 10.1016/j.amjcard.2006.06.042
|
[23] |
Kataoka Y, Hammadah M, Puri R, et al. Plaque microstructures in patients with coronary artery disease who achieved very low low-density lipoprotein cholesterol levels. Atherosclerosis 2015; 242: 490−495. doi: 10.1016/j.atherosclerosis.2015.08.005
|
[24] |
Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383−1389.
|
[25] |
Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335: 1001−1009. doi: 10.1056/NEJM199610033351401
|
[26] |
Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195−2207. doi: 10.1056/NEJMoa0807646
|
[27] |
Schartl M, Bocksch W, Koschyk DH, et al. Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease. Circulation 2001; 104: 387−392. doi: 10.1161/hc2901.093188
|
[28] |
Takano M, Mizuno K, Yokoyama S, et al. Changes in coronary plaque color and morphology by lipid-lowering therapy with atorvastatin: serial evaluation by coronary angioscopy. J Am Coll Cardiol 2003; 42: 680−686. doi: 10.1016/S0735-1097(03)00770-8
|
[29] |
Takarada S, Imanishi T, Kubo T, et al. Effect of statin therapy on coronary fibrous-cap thickness in patients with acute coronary syndrome: assessment by optical coherence tomography study. Atherosclerosis 2009; 202: 491−497. doi: 10.1016/j.atherosclerosis.2008.05.014
|
[30] |
Kurihara O, Kim HO, Russo M, et al. Relation of low-density lipoprotein cholesterol level to plaque rupture. Am J Cardiol 2020; 134: 48−54. doi: 10.1016/j.amjcard.2020.08.016
|
[31] |
Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting residual atherosclerotic cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2019; 39: e1−e9. doi: 10.1161/ATV.0000000000000077
|
[32] |
Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet 2014; 384: 626−635. doi: 10.1016/S0140-6736(14)61177-6
|
[33] |
Varbo A, Benn M, Tybjaerg-Hansen A, et al. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013; 61: 427−436. doi: 10.1016/j.jacc.2012.08.1026
|
[34] |
Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979; 60: 473−485. doi: 10.1161/01.CIR.60.3.473
|
[35] |
Karpe F. Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 1999; 246: 341−355. doi: 10.1046/j.1365-2796.1999.00548.x
|
[36] |
Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb 2009; 16: 145−154. doi: 10.5551/jat.E598
|
[37] |
Sakai N, Uchida Y, Ohashi K, et al. Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA. J Lipid Res 2003; 44: 1256−1262. doi: 10.1194/jlr.M300090-JLR200
|
[38] |
Kurihara O, Okajima F, Takano M, et al. Postprandial hyperchylomicronemia and thin-cap fibroatheroma in nonculprit lesions. Arterioscler Thromb Vasc Biol 2018; 38: 1940−1947. doi: 10.1161/ATVBAHA.118.311245
|
[39] |
Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 2017; 14: 21−29. doi: 10.1038/nrcardio.2016.166
|
[40] |
Kolodgie FD, Burke AP, Wight TN, Virmani R. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr Opin Lipidol 2004; 15: 575−582. doi: 10.1097/00041433-200410000-00012
|
[41] |
Kurihara O, Takano M, Kakuta T, et al. Determinants of ST-segment elevation myocardial infarction as clinical presentation of acute coronary syndrome. J Thromb Thrombolysis 2021; 51: 1026−1035. doi: 10.1007/s11239-020-02281-7
|
[42] |
Kolodgie FD, Burke AP, Farb A, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 2002; 22: 1642−1648. doi: 10.1161/01.ATV.0000034021.92658.4C
|
[43] |
Partida RA, Libby P, Crea F, Jang IK. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J 2018; 39: 2070−2076. doi: 10.1093/eurheartj/ehx786
|
[44] |
Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J 2015; 36: 2984−2987.
|
[45] |
Peiffer V, Sherwin SJ, Weinberg PD. Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 2013; 99: 242−250. doi: 10.1093/cvr/cvt044
|
[46] |
Thondapu V, Mamon C, Poon EKW, et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc Res 2020. Published online first: Aug 24, 2020. DOI: 10.1093/cvr/cvaa251.
|
[47] |
Yamamoto E, Yonetsu T, Kakuta T, et al. Clinical and laboratory predictors for plaque erosion in patients with acute coronary syndromes. J Am Heart Assoc 2019; 8: e012322.
|
[48] |
Kurihara O, Takano M, Yamamoto E, et al. Seasonal variations in the pathogenesis of acute coronary syndromes. J Am Heart Assoc 2020; 9: e015579.
|
[49] |
Kurihara O, Takano M, Soeda T, et al. Degree of luminal narrowing and composition of thrombus in plaque erosion. J Thromb Thrombolysis 2021; 51: 143−150. doi: 10.1007/s11239-020-02159-8
|
[50] |
Barua RS and Ambrose JA. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler Thromb Vasc Biol 2013; 33: 1460−1467. doi: 10.1161/ATVBAHA.112.300154
|
[51] |
Sugiyama T, Yamamoto E, Fracassi F, et al. Calcified plaques in patients with acute coronary syndromes. JACC Cardiovasc Interv 2019; 12: 531−540. doi: 10.1016/j.jcin.2018.12.013
|
[52] |
Mori H, Torii S, Kutyna M, et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging 2018; 11: 127−142. doi: 10.1016/j.jcmg.2017.10.012
|
[53] |
Kataoka Y, Puri R, Hammadah M, et al. Spotty calcification and plaque vulnerability in vivo: frequency-domain optical coherence tomography analysis. Cardiovasc Diagn Ther 2014; 4: 460−469.
|
[54] |
Mizukoshi M, Kubo T, Takarada S, et al. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am J Cardiol 2013; 112: 34−40. doi: 10.1016/j.amjcard.2013.02.048
|
[55] |
Pugliese G, Iacobini C, Blasetti Fantauzzi C, Menini S. The dark and bright side of atherosclerotic calcification. Atherosclerosis 2015; 238: 220−230. doi: 10.1016/j.atherosclerosis.2014.12.011
|
[56] |
Bittencourt MS and Cerci RJ. Statin effects on atherosclerotic plaques: regression or healing? BMC Med 2015; 13: 260. doi: 10.1186/s12916-015-0499-9
|
[57] |
Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA 2014; 311: 271−278. doi: 10.1001/jama.2013.282535
|
[58] |
Vergallo R and Crea F. Atherosclerotic plaque healing. N Engl J Med 2020; 383: 846−857. doi: 10.1056/NEJMra2000317
|
[59] |
Crea F and Liuzzo G. Pathogenesis of acute coronary syndromes. J Am Coll Cardiol 2013; 61: 1−11.
|
[60] |
Pedicino D, Vinci R, Giglio AF, et al. Alterations of hyaluronan metabolism in acute coronary syndrome: implications for plaque erosion. J Am Coll Cardiol 2018; 72: 1490−1503. doi: 10.1016/j.jacc.2018.06.072
|
[61] |
Okafor ON and Gorog DA. Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J Am Coll Cardiol 2015; 65: 1683−1699. doi: 10.1016/j.jacc.2015.02.040
|
[62] |
Kanji R, Kubica J, Navarese EP and Gorog DA. Endogenous fibrinolysis-relevance to clinical thrombosis risk assessment. Eur J Clin Invest 2020: e13471.
|
[63] |
Shimokado A, Matsuo Y, Kubo T, et al. In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis 2018; 275: 35−42. doi: 10.1016/j.atherosclerosis.2018.05.025
|
[64] |
Fracassi F, Crea F, Sugiyama T, et al. Healed culprit plaques in patients with acute coronary syndromes. J Am Coll Cardiol 2019; 73: 2253−2263.
|
[65] |
Wang C, Hu S, Wu J, et al. Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina: an in vivo OCT and IVUS study. EuroIntervention 2019; 15: e771−e778. doi: 10.4244/EIJ-D-18-01175
|
[66] |
Vergallo R, Porto I, D'Amario D, et al. Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared With Patients With Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study. JAMA Cardiol 2019; 4: 321−329. doi: 10.1001/jamacardio.2019.0275
|
[67] |
Araki M, Yonetsu T, Kurihara O, et al. Predictors of Rapid Plaque Progression: An Optical Coherence Tomography Study. JACC Cardiovasc Imaging. Published online first: Sep 29, 2020. DOI: 10.1016/j.jcmg.2020.08.014.
|
[68] |
Kurihara O, Russo M, Kim HO, et al. Clinical significance of healed plaque detected by optical coherence tomography: a 2-year follow-up study. J Thromb Thrombolysis 2020; 50: 895−902. doi: 10.1007/s11239-020-02076-w
|
[69] |
Kurihara O, Takano M, Araki M, et al. Residual thrombus following plaque disruption contributes to rapid plaque progression: in-vivo serial optical coherence tomography imaging. Coron Artery Dis. Published online first: Jan 18, 2021. DOI: 10.1097/MCA.0000000000001009.
|