Citation: | Please cite this article as: Colombo C, Garatti L, Ferrante G, Casadei F, Montalto C, Crimi G, Cogliati C, Ammirati E, Savonitto S, Morici N. Cardiovascular injuries and SARS-COV-2 infection: focus on elderly people. J Geriatr Cardiol 2021; 18(7): 534−548. DOI: 10.11909/j.issn.1671-5411.2021.07.001 |
[1] |
WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int (accessed January 24, 2021).
|
[2] |
Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239. doi: 10.1001/jama.2020.2648
|
[3] |
Guan W, Ni Z, Hu Y, et al. Clinical characteristics of 2019 novel coronavirus infection in China. Medrxiv 2020: 2020.02.06.20020974.
|
[4] |
Panagiotou OA, Kosar CM, White EM, et al. Risk Factors Associated With All-Cause 30-Day Mortality in Nursing Home Residents With COVID-19. JAMA Intern Med 2021. doi: 10.1001/jamainternmed.2020.7968
|
[5] |
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395: 497−506. doi: 10.1016/S0140-6736(20)30183-5
|
[6] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; 395: 1054−1062. doi: 10.1016/S0140-6736(20)30566-3
|
[7] |
Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46: 846−848. doi: 10.1007/s00134-020-05991-x
|
[8] |
Napoli C, Tritto I, Benincasa G, et al. Cardiovascular involvement during COVID-19 and clinical implications in elderly patients. A review. Ann Med Surg 2020; 57: 236−243. doi: 10.1016/j.amsu.2020.07.054
|
[9] |
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 271−280. doi: 10.1016/j.cell.2020.02.052
|
[10] |
Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr Drug Targets 2017; 18: 1301−1313.
|
[11] |
Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation 2020; 142: 426−428. doi: 10.1161/CIRCULATIONAHA.120.047049
|
[12] |
Sankrityayan H, Kale A, Sharma N, et al. Evidence for Use or Disuse of Renin-Angiotensin System Modulators in Patients Having COVID-19 With an Underlying Cardiorenal Disorder. J Cardiovasc Pharmacol Ther 2020; 25: 299−306. doi: 10.1177/1074248420921720
|
[13] |
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270−273. doi: 10.1038/s41586-020-2012-7
|
[14] |
Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020; 126: 1443−1455. doi: 10.1161/CIRCRESAHA.120.317055
|
[15] |
Hendren Nicholas S, Drazner Mark H, Bozkurt Biykem, Cooper Leslie T. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation 2020; 141: 1903−1914. doi: 10.1161/CIRCULATIONAHA.120.047349
|
[16] |
Clerkin Kevin J, Fried Justin A, Jayant R, et al. COVID-19 and Cardiovascular Disease. Circulation 2020; 141: 1648−1655. doi: 10.1161/CIRCULATIONAHA.120.046941
|
[17] |
Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116: 1097−1100. doi: 10.1093/cvr/cvaa078
|
[18] |
Dijkman R, Jebbink MF, Deijs M, et al. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol 2012; 93: 1924−9. doi: 10.1099/vir.0.043919-0
|
[19] |
Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta Int J Clin Chem 2020; 507: 167−173. doi: 10.1016/j.cca.2020.04.027
|
[20] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395: 1033−1034. doi: 10.1016/S0140-6736(20)30628-0
|
[21] |
Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 2015; 116: 1254−1268. doi: 10.1161/CIRCRESAHA.116.302317
|
[22] |
Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 2018; 15: 203−214. doi: 10.1038/nrcardio.2017.161
|
[23] |
Moccia F, Gerbino A, Lionetti V, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Gero Science 2020; 42: 1021−1049.
|
[24] |
Li C, Jiang J, Wang F, et al. Longitudinal correlation of biomarkers of cardiac injury, inflammation, and coagulation to outcome in hospitalized COVID-19 patients. J Mol Cell Cardiol 2020; 147: 74−87. doi: 10.1016/j.yjmcc.2020.08.008
|
[25] |
Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22: 911−915. doi: 10.1002/ejhf.1828
|
[26] |
Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14: 185−192. doi: 10.1007/s11684-020-0754-0
|
[27] |
Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003; 289: 2801−2809. doi: 10.1001/jama.289.21.JOC30885
|
[28] |
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17: 259−260. doi: 10.1038/s41569-020-0360-5
|
[29] |
Netzer NC, Strohl KP, Högel J, et al. Right ventricle dimensions and function in response to acute hypoxia in healthy human subjects. Acta Physiol 2017; 219: 478−485. doi: 10.1111/apha.12740
|
[30] |
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet Lond Engl 2020; 395: 1417−1418. doi: 10.1016/S0140-6736(20)30937-5
|
[31] |
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020; 383: 120−128. doi: 10.1056/NEJMoa2015432
|
[32] |
Morici N, Bottiroli M, Fumagalli R, et al. Role of von Willebrand Factor and ADAMTS-13 in the Pathogenesis of Thrombi in SARS-CoV-2 Infection: Time to Rethink. Thromb Haemost 2020; 120: 1339−1342. doi: 10.1055/s-0040-1713400
|
[33] |
Giustino G, Pinney SP, Lala A, et al. Coronavirus and Cardiovascular Disease, Myocardial Injury, and Arrhythmia: JACC Focus Seminar. J Am Coll Cardiol 2020; 76: 2011−2023. doi: 10.1016/j.jacc.2020.08.059
|
[34] |
Xie XD, Chen JZ, Wang XX, et al. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006; 78: 2166−2171. doi: 10.1016/j.lfs.2005.09.038
|
[35] |
Lakatta EG. The reality of getting old. Nat Rev Cardiol 2018; 15: 499−500. doi: 10.1038/s41569-018-0068-y
|
[36] |
Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 2020; 32(8): 1599−608. doi: 10.1007/s40520-020-01631-y
|
[37] |
Napoli C, Tritto I, Mansueto G, Coscioni E, Ambrosio G. Immunosenescence exacerbates the COVID-19. Arch Gerontol Geriatr 2020; 90: 104174. doi: 10.1016/j.archger.2020.104174
|
[38] |
Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology 2007; 120: 435−446. doi: 10.1111/j.1365-2567.2007.02555.x
|
[39] |
Thygesen K, Alpert JS, White HD, et al. Universal Definition of Myocardial Infarction. Circulation 2007; 116: 2634−2653. doi: 10.1161/CIRCULATIONAHA.107.187397
|
[40] |
Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020; 323: 1061. doi: 10.1001/jama.2020.1585
|
[41] |
Lala A, Johnson KW, Januzzi JL, et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol 2020; 76: 533−546. doi: 10.1016/j.jacc.2020.06.007
|
[42] |
Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Coll Cardiol 2020; 75: 2352−2371.
|
[43] |
Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020; 17: 1463−1471. doi: 10.1016/j.hrthm.2020.05.001
|
[44] |
Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition). http://kjfy.meetingchina.org/msite/news/show/cn/3337.html (accessed January 24, 2021).
|
[45] |
Ammirati E, Wang DW. SARS-CoV-2 inflames the heart. The importance of awareness of myocardial injury in COVID-19 patients. Int J Cardiol 2020; 311: 122−123. doi: 10.1016/j.ijcard.2020.03.086
|
[46] |
Fried JA, Kumudha R, Reema B, et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation 2020; 141: 1930−1936. doi: 10.1161/CIRCULATIONAHA.120.047164
|
[47] |
Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J 2020; 41: 1861−1862. doi: 10.1093/eurheartj/ehaa286
|
[48] |
Musher DM, Abers MS, Corrales-Medina VF. Acute Infection and Myocardial Infarction. N Engl J Med 2019; 380: 171−176. doi: 10.1056/NEJMra1808137
|
[49] |
Kwong JC, Schwartz KL, Campitelli MA, et al. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N Engl J Med 2018; 378: 345−353. doi: 10.1056/NEJMoa1702090
|
[50] |
Liu PP, Blet A, Smyth D, Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020; 142: 68−78. doi: 10.1161/CIRCULATIONAHA.120.047549
|
[51] |
Harskamp RE, van Ginkel MW. Acute respiratory tract infections: a potential trigger for the acute coronary syndrome. Ann Med 2008; 40: 121−128. doi: 10.1080/07853890701753672
|
[52] |
Schiavone M, Gobbi C, Biondi-Zoccai G, et al. Acute Coronary Syndromes and Covid-19: Exploring the Uncertainties. J Clin Med 2020; 9: 1683. doi: 10.3390/jcm9061683
|
[53] |
Baldi E, Sechi GM, Mare C, et al. Out-of-Hospital Cardiac Arrest during the Covid-19 Outbreak in Italy. N Engl J Med 2020; 383: 496−498. doi: 10.1056/NEJMc2010418
|
[54] |
De Luca G, Verdoia M, Cercek M, et al. Impact of COVID-19 pandemic on mechanical reperfusion for patients with STEMI. J Am Coll Cardiol 2020; 76: 2321−2330. doi: 10.1016/j.jacc.2020.09.546
|
[55] |
Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020; 17: 1439−1444. doi: 10.1016/j.hrthm.2020.06.016
|
[56] |
Colon CM, Barrios JG, Chiles JW, et al. Atrial Arrhythmias in COVID-19 Patients. JACC Clin Electrophysiol 2020; 6: 1189−1190. doi: 10.1016/j.jacep.2020.05.015
|
[57] |
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091.
|
[58] |
Mehra MR, Ruschitzka F. COVID-19 Illness and Heart Failure: A Missing Link? JACC Heart Fail 2020; 8: 512. doi: 10.1016/j.jchf.2020.03.004
|
[59] |
Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251−259. doi: 10.1056/NEJMoa052256
|
[60] |
Hogenhuis J, Voors AA, Jaarsma T, et al. Influence of age on natriuretic peptides in patients with chronic heart failure: a comparison between ANP/NT-ANP and BNP/NT-proBNP. Eur J Heart Fail 2005; 7: 81−86. doi: 10.1016/j.ejheart.2004.03.014
|
[61] |
Alehagen U, Goetze JP, Dahlström U. Reference intervals and decision limits for B-type natriuretic peptide (BNP) and its precursor (Nt-proBNP) in the elderly. Clin Chim Acta Int J Clin Chem 2007; 382: 8−14. doi: 10.1016/j.cca.2007.03.005
|
[62] |
Januzzi JL, van Kimmenade R, Lainchbury J, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 2006; 27: 330−337. doi: 10.1093/eurheartj/ehi631
|
[63] |
Vergaro G, Januzzi JL, Solal AC, et al. NT-proBNP prognostic value is maintained in elderly and very elderly patients with chronic systolic heart failure. Int J Cardiol 2018; 271: 324−330. doi: 10.1016/j.ijcard.2018.04.006
|
[64] |
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145−147. doi: 10.1016/j.thromres.2020.04.013
|
[65] |
Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020; 41: 3038−3044. doi: 10.1093/eurheartj/ehaa623
|
[66] |
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 2950−2973.
|
[67] |
Ranucci M, Sitzia C, Baryshnikova E, et al. COVID-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome. J Clin Med 2020; 9: 3487. doi: 10.3390/jcm9113487
|
[68] |
Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. Heart 2020; 106: 1142−1147. doi: 10.1136/heartjnl-2020-317062
|
[69] |
Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020; 41: 2070−2079. doi: 10.1093/eurheartj/ehaa408
|
[70] |
Ren B, Yan FF, Deng ZM, et al. Extremely High Incidence of Lower Extremity Deep Venous Thrombosis in 48 Patients With Severe COVID-19 in Wuhan. Circulation 2020; 142: 181−183. doi: 10.1161/CIRCULATIONAHA.120.047407
|
[71] |
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9−14. doi: 10.1016/j.thromres.2020.04.024
|
[72] |
Llitjos J, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18: 1743−1746. doi: 10.1111/jth.14869
|
[73] |
Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA 2020; 324: 799. doi: 10.1001/jama.2020.13372
|
[74] |
Zhang L, Feng X, Zhang D, et al. Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation 2020; 142: 114−128. doi: 10.1161/CIRCULATIONAHA.120.046702
|
[75] |
Hippensteel JA, Burnham EL, Jolley SE. Prevalence of venous thromboembolism in critically ill patients with COVID-19. Br J Haematol 2020; 190: e134−e137. doi: 10.1111/bjh.16646
|
[76] |
Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020; 77: 198−209. doi: 10.1111/his.14134
|
[77] |
Birocchi S, Manzoni M, Podda GM, et al. High rates of pulmonary artery occlusions in COVID-19. A meta-analysis. Eur J Clin Invest 2021; 51: e13433.
|
[78] |
Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 2009; 145: 24−33. doi: 10.1111/j.1365-2141.2009.07600.x
|
[79] |
Information on COVID-19 Treatment, Prevention and Research. COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/ (access on January 8, 2021).
|
[80] |
The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med 2020: NEJMoa2021436.
|
[81] |
Ben Dhaou B, Boussema F, Aydi Z, Baili L, Tira H, Cherif O, et al. Corticoid-associated complications in elderly. Tunis Med 2012; 90: 774−777.
|
[82] |
Silverman HS, Pfeifer MP. Relation between use of anti-inflammatory agents and left ventricular free wall rupture during acute myocardial infarction. Am J Cardiol 1987; 59: 363−364. doi: 10.1016/0002-9149(87)90817-4
|
[83] |
Flaczyk A, Rosovsky RP, Reed CT, et al. Comparison of published guidelines for management of coagulopathy and thrombosis in critically ill patients with COVID 19: implications for clinical practice and future investigations. Crit Care 2020; 24: 559. doi: 10.1186/s13054-020-03273-y
|
[84] |
Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18: 1094−1099. doi: 10.1111/jth.14817
|
[85] |
Li X, Ma X. The role of heparin in sepsis: much more than just an anticoagulant. Br J Haematol 2017; 179: 389−398. doi: 10.1111/bjh.14885
|
[86] |
Tritschler T, Mathieu ME, Skeith L, et al. Anticoagulant interventions in hospitalized patients with COVID-19: A scoping review of randomized controlled trials and call for international collaboration. J Thromb Haemost JTH 2020; 18: 2958−2967. doi: 10.1111/jth.15094
|
[87] |
COVID-19 Anticoagulation Trials ‘Paused’ for Futility, Safety. Medscape. http://www.medscape.com/viewarticle/943085 (accessed on January 8, 2021).
|
[88] |
Ferrario CM, Jewell J, Chappell MC, et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation 2005; 111: 2605−2610. doi: 10.1161/CIRCULATIONAHA.104.510461
|
[89] |
Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur Heart J 2020; 41: 1801−1803. doi: 10.1093/eurheartj/ehaa235
|
[90] |
Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med 2020; 382: 2441−2448. doi: 10.1056/NEJMoa2008975
|
[91] |
Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med 2020; 382: 2431−2440. doi: 10.1056/NEJMoa2006923
|
[92] |
Mehta N, Kalra A, Nowacki AS, et al. Association of Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1020. doi: 10.1001/jamacardio.2020.1855
|
[93] |
Adamo M, Lombardi CM, Metra M. June 2020 at a glance: focus on COVID-19, quality of life and comorbidities. Eur J Heart Fail 2020; 22: 917−918. doi: 10.1002/ejhf.1515
|
[94] |
Han YL, Li YM, Ma CS. Scientific statement of the Chinese Society of Cardiology (CSC) on using of renin angiotensin system blockers in patients with cardiovascular disease and COVID-19. J Geriatr Cardiol 2020; 17: 241−242.
|
[95] |
Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020; 323: 1582. doi: 10.1001/jama.2020.4783
|
[96] |
Valk SJ, Piechotta V, Chai KL, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev 2020; 5: CD013600.
|
[97] |
Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med 2021; 384: 619−629. doi: 10.1056/NEJMoa2031304
|
[98] |
Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020: 371.
|
[99] |
Deng W, Bao L, Liu J, et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 2020; 369: 818−823. doi: 10.1126/science.abc5343
|
[100] |
Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369: 77−81. doi: 10.1126/science.abc1932
|
[101] |
Addetia A, Crawford KHD, Dingens A, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. J Clin Microbiol 2020; 58: e02107−e02120.
|
[102] |
Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5: 1−14. doi: 10.1038/s41392-019-0089-y
|
[103] |
Walsh EE, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020; 383: 2439−2450. doi: 10.1056/NEJMoa2027906
|
[104] |
Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med 2020; 383: 2427−2438. doi: 10.1056/NEJMoa2028436
|
[105] |
Heberto AB, Carlos PCJ, Antonio CRJ, et al. Implications of myocardial injury in Mexican hospitalized patients with coronavirus disease 2019 (COVID-19). IJC Heart Vasc 2020; 30: 100638. doi: 10.1016/j.ijcha.2020.100638
|
[106] |
Arcari L, Luciani M, Cacciotti L, et al. Incidence and determinants of high-sensitivity troponin and natriuretic peptides elevation at admission in hospitalized COVID-19 pneumonia patients. Intern Emerg Med 2020; 15: 1467−1476. doi: 10.1007/s11739-020-02498-7
|
[107] |
Cipriani A, Capone F, Donato F, et al. Cardiac injury and mortality in patients with Coronavirus disease 2019 (COVID-19): insights from a mediation analysis. Intern Emerg Med 2020; 16: 419−427.
|
[108] |
Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020; 55: 2000524. doi: 10.1183/13993003.00524-2020
|
[109] |
Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1−8.
|
[110] |
Lombardi CM, Carubelli V, Iorio A, et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. JAMA Cardiol 2020; 5: 1274. doi: 10.1001/jamacardio.2020.3538
|
[111] |
Lorente-Ros A, Ruiz JMM, Rincón LM, et al. Myocardial injury determination improves risk stratification and predicts mortality in COVID-19 patients. Cardiol J 2020; 27: 489−496.
|
[112] |
Karbalai Saleh S, Oraii A, Soleimani A, et al. The association between cardiac injury and outcomes in hospitalized patients with COVID-19. Intern Emerg Med 2020; 15: 1415−1424. doi: 10.1007/s11739-020-02466-1
|
[113] |
Majure DT, Gruberg L, Saba SG, et al. Usefulness of Elevated Troponin to Predict Death in Patients With COVID-19 and Myocardial Injury. Am J Cardiol 2021; 138: 100−106. doi: 10.1016/j.amjcard.2020.09.060
|
[114] |
Nie SF, Yu M, Xie T, et al. Cardiac Troponin I Is an Independent Predictor for Mortality in Hospitalized Patients With COVID-19. Circulation 2020; 142: 608−610.
|
[115] |
Qin JJ, Cheng X, Zhou F, et al. Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19. Hypertens Dallas Tex 2020; 76: 1104−1112. doi: 10.1161/HYPERTENSIONAHA.120.15528
|
[116] |
Stefanini GG, Chiarito M, Ferrante G, et al. Early detection of elevated cardiac biomarkers to optimise risk stratification in patients with COVID-19. Heart 2020; 106: 1512−1518. doi: 10.1136/heartjnl-2020-317322
|
[117] |
Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5: 802. doi: 10.1001/jamacardio.2020.0950
|
[118] |
Tan WP, Zhu Y, Yi H, et al. Development a Nomogram to Predict Prognosis in Severe and Critically Ill Patients with COVID-19. DOI: 10.21203/rs.3.rs-34264/v1.
|
[119] |
Wei JF, Huang FY, Xiong TY, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart Br Card Soc 2020; 106: 1154−1159.
|
[120] |
Woo SH, Rios-Diaz AJ, Kubey AA, et al. Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model. Am J Med Sci 2021; Published online first: May 21, 2021; DOI: 10.1016/j.amjms.2021.04.001.
|
[121] |
Yang S, Ma L, Wang YL, et al. Risk factors for critical ill events of patients with COVID-19 in Wuhan, China: a retrospective cohort study. medRxiv 2020.06.14.20130765; DOI: https://doi.org/10.1101/2020.06.14.20130765.
|
[122] |
Criel M, Falter M, Jaeken J, et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? Published online first: Jul 30, 2020; DOI: 10.1183/13993003.01201–2020.
|
[123] |
Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost JTH 2020; 18: 1421−1424. doi: 10.1111/jth.14830
|
[124] |
Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res 2020; 192: 23−26. doi: 10.1016/j.thromres.2020.05.018
|
[125] |
Desborough MJR, Doyle AJ, Griffiths A, et al. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb Res 2020; 193: 1−4. doi: 10.1016/j.thromres.2020.05.049
|
[126] |
Dubois-Silva Á, Barbagelata-López C, Mena Á, et al. Pulmonary embolism and screening for concomitant proximal deep vein thrombosis in noncritically ill hospitalized patients with coronavirus disease 2019. Intern Emerg Med 2020; 15: 865−870. doi: 10.1007/s11739-020-02416-x
|
[127] |
Fraissé M, Logre E, Pajot O, et al. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care 2020; 24: 275. doi: 10.1186/s13054-020-03025-y
|
[128] |
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46: 1089−1098. doi: 10.1007/s00134-020-06062-x
|
[129] |
Koleilat I, Galen B, Choinski K, et al. Clinical characteristics of acute lower extremity deep venous thrombosis diagnosed by duplex in patients hospitalized for coronavirus disease 2019. J Vasc Surg Venous Lymphat Disord 2021; 9: 36−46. doi: 10.1016/j.jvsv.2020.06.012
|
[130] |
Longchamp A, Longchamp J, Manzocchi-Besson S, et al. Venous thromboembolism in critically Ill patients with COVID-19: Results of a screening study for deep vein thrombosis. Res Pract Thromb Haemost 2020; 4: 842−847. doi: 10.1002/rth2.12376
|
[131] |
Mestre-Gómez B, Lorente-Ramos RM, Rogado J, et al. Incidence of pulmonary embolism in non-critically ill COVID-19 patients. Predicting factors for a challenging diagnosis. J Thromb Thrombolysis 2020: 1−7.
|
[132] |
Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020; 18: 1995−2002. doi: 10.1111/jth.14888
|
[133] |
Nahum J, Morichau-Beauchant T, Daviaud F, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open 2020; 3: e2010478. doi: 10.1001/jamanetworkopen.2020.10478
|
[134] |
Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020; 142: 184−186. doi: 10.1161/CIRCULATIONAHA.120.047430
|
[135] |
Soumagne T, Lascarrou JB, Hraiech S, et al. Factors Associated With Pulmonary Embolism Among Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: A Multicenter Study Among 375 Patients. Crit Care Explor 2020; 2: e0166. doi: 10.1097/CCE.0000000000000166
|
[136] |
Tavazzi G, Civardi L, Caneva L, et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening. Intensive Care Med 2020; 46: 1121−1123. doi: 10.1007/s00134-020-06040-3
|
[137] |
Thomas W, Varley J, Johnston A, et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thromb Res 2020; 191: 76−77. doi: 10.1016/j.thromres.2020.04.028
|
[138] |
Wang W. Analysis of Risk Factors for the Thromboembolic Events from 88 Patients with COVID-19 Pneumonia in Wuhan, China: A Retrospective Report. Med Sci Monit 2021; 27: e929708.
|