ISSN 1671-5411 CN 11-5329/R
Volume 18 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
Please cite this article as: Colombo C, Garatti L, Ferrante G, Casadei F, Montalto C, Crimi G, Cogliati C, Ammirati E, Savonitto S, Morici N. Cardiovascular injuries and SARS-COV-2 infection: focus on elderly people. J Geriatr Cardiol 2021; 18(7): 534−548. DOI: 10.11909/j.issn.1671-5411.2021.07.001
Citation: Please cite this article as: Colombo C, Garatti L, Ferrante G, Casadei F, Montalto C, Crimi G, Cogliati C, Ammirati E, Savonitto S, Morici N. Cardiovascular injuries and SARS-COV-2 infection: focus on elderly people. J Geriatr Cardiol 2021; 18(7): 534−548. DOI: 10.11909/j.issn.1671-5411.2021.07.001

Cardiovascular injuries and SARS-COV-2 infection: focus on elderly people

doi: 10.11909/j.issn.1671-5411.2021.07.001
*The authors contributed equally to this manuscript
More Information
  • The novel coronavirus disease (COVID-19) has hit the healthcare system worldwide. The risk of severe infection and mortality increases with advancing age, especially in subjects with comorbidities such as cardiovascular disease, hypertension, diabetes, obesity and cancer. Moreover, cardiovascular complications such as myocardial injury, heart failure and thromboembolism are frequently observed in COVID-19 cases, and several biomarkers (troponin, NTproBNP and D-Dimer) have been identified as prognostic indicators of disease severity and worst outcome. Currently, there is no specific therapy against SARS-CoV-2, although many medications are under investigation. The aim of this review will be to explore the intertwined relationship between COVID-19 disease and the cardiovascular system, focusing on elderly population. The available supportive treatments along with the related concerns in elderly patients, due to their comorbidities and polypharmacotherapy, will be explored.
  • loading
  • [1]
    WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int (accessed January 24, 2021).
    [2]
    Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239. doi: 10.1001/jama.2020.2648
    [3]
    Guan W, Ni Z, Hu Y, et al. Clinical characteristics of 2019 novel coronavirus infection in China. Medrxiv 2020: 2020.02.06.20020974.
    [4]
    Panagiotou OA, Kosar CM, White EM, et al. Risk Factors Associated With All-Cause 30-Day Mortality in Nursing Home Residents With COVID-19. JAMA Intern Med 2021. doi: 10.1001/jamainternmed.2020.7968
    [5]
    Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395: 497−506. doi: 10.1016/S0140-6736(20)30183-5
    [6]
    Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020; 395: 1054−1062. doi: 10.1016/S0140-6736(20)30566-3
    [7]
    Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46: 846−848. doi: 10.1007/s00134-020-05991-x
    [8]
    Napoli C, Tritto I, Benincasa G, et al. Cardiovascular involvement during COVID-19 and clinical implications in elderly patients. A review. Ann Med Surg 2020; 57: 236−243. doi: 10.1016/j.amsu.2020.07.054
    [9]
    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 271−280. doi: 10.1016/j.cell.2020.02.052
    [10]
    Rodrigues Prestes TR, Rocha NP, Miranda AS, et al. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Curr Drug Targets 2017; 18: 1301−1313.
    [11]
    Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation 2020; 142: 426−428. doi: 10.1161/CIRCULATIONAHA.120.047049
    [12]
    Sankrityayan H, Kale A, Sharma N, et al. Evidence for Use or Disuse of Renin-Angiotensin System Modulators in Patients Having COVID-19 With an Underlying Cardiorenal Disorder. J Cardiovasc Pharmacol Ther 2020; 25: 299−306. doi: 10.1177/1074248420921720
    [13]
    Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270−273. doi: 10.1038/s41586-020-2012-7
    [14]
    Akhmerov A, Marbán E. COVID-19 and the Heart. Circ Res 2020; 126: 1443−1455. doi: 10.1161/CIRCRESAHA.120.317055
    [15]
    Hendren Nicholas S, Drazner Mark H, Bozkurt Biykem, Cooper Leslie T. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation 2020; 141: 1903−1914. doi: 10.1161/CIRCULATIONAHA.120.047349
    [16]
    Clerkin Kevin J, Fried Justin A, Jayant R, et al. COVID-19 and Cardiovascular Disease. Circulation 2020; 141: 1648−1655. doi: 10.1161/CIRCULATIONAHA.120.046941
    [17]
    Chen L, Li X, Chen M, et al. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 2020; 116: 1097−1100. doi: 10.1093/cvr/cvaa078
    [18]
    Dijkman R, Jebbink MF, Deijs M, et al. Replication-dependent downregulation of cellular angiotensin-converting enzyme 2 protein expression by human coronavirus NL63. J Gen Virol 2012; 93: 1924−9. doi: 10.1099/vir.0.043919-0
    [19]
    Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta Int J Clin Chem 2020; 507: 167−173. doi: 10.1016/j.cca.2020.04.027
    [20]
    Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet 2020; 395: 1033−1034. doi: 10.1016/S0140-6736(20)30628-0
    [21]
    Mann DL. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res 2015; 116: 1254−1268. doi: 10.1161/CIRCRESAHA.116.302317
    [22]
    Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol 2018; 15: 203−214. doi: 10.1038/nrcardio.2017.161
    [23]
    Moccia F, Gerbino A, Lionetti V, et al. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. Gero Science 2020; 42: 1021−1049.
    [24]
    Li C, Jiang J, Wang F, et al. Longitudinal correlation of biomarkers of cardiac injury, inflammation, and coagulation to outcome in hospitalized COVID-19 patients. J Mol Cell Cardiol 2020; 147: 74−87. doi: 10.1016/j.yjmcc.2020.08.008
    [25]
    Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020; 22: 911−915. doi: 10.1002/ejhf.1828
    [26]
    Zou X, Chen K, Zou J, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14: 185−192. doi: 10.1007/s11684-020-0754-0
    [27]
    Booth CM, Matukas LM, Tomlinson GA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA 2003; 289: 2801−2809. doi: 10.1001/jama.289.21.JOC30885
    [28]
    Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17: 259−260. doi: 10.1038/s41569-020-0360-5
    [29]
    Netzer NC, Strohl KP, Högel J, et al. Right ventricle dimensions and function in response to acute hypoxia in healthy human subjects. Acta Physiol 2017; 219: 478−485. doi: 10.1111/apha.12740
    [30]
    Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet Lond Engl 2020; 395: 1417−1418. doi: 10.1016/S0140-6736(20)30937-5
    [31]
    Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020; 383: 120−128. doi: 10.1056/NEJMoa2015432
    [32]
    Morici N, Bottiroli M, Fumagalli R, et al. Role of von Willebrand Factor and ADAMTS-13 in the Pathogenesis of Thrombi in SARS-CoV-2 Infection: Time to Rethink. Thromb Haemost 2020; 120: 1339−1342. doi: 10.1055/s-0040-1713400
    [33]
    Giustino G, Pinney SP, Lala A, et al. Coronavirus and Cardiovascular Disease, Myocardial Injury, and Arrhythmia: JACC Focus Seminar. J Am Coll Cardiol 2020; 76: 2011−2023. doi: 10.1016/j.jacc.2020.08.059
    [34]
    Xie XD, Chen JZ, Wang XX, et al. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 2006; 78: 2166−2171. doi: 10.1016/j.lfs.2005.09.038
    [35]
    Lakatta EG. The reality of getting old. Nat Rev Cardiol 2018; 15: 499−500. doi: 10.1038/s41569-018-0068-y
    [36]
    Perrotta F, Corbi G, Mazzeo G, et al. COVID-19 and the elderly: insights into pathogenesis and clinical decision-making. Aging Clin Exp Res 2020; 32(8): 1599−608. doi: 10.1007/s40520-020-01631-y
    [37]
    Napoli C, Tritto I, Mansueto G, Coscioni E, Ambrosio G. Immunosenescence exacerbates the COVID-19. Arch Gerontol Geriatr 2020; 90: 104174. doi: 10.1016/j.archger.2020.104174
    [38]
    Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology 2007; 120: 435−446. doi: 10.1111/j.1365-2567.2007.02555.x
    [39]
    Thygesen K, Alpert JS, White HD, et al. Universal Definition of Myocardial Infarction. Circulation 2007; 116: 2634−2653. doi: 10.1161/CIRCULATIONAHA.107.187397
    [40]
    Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020; 323: 1061. doi: 10.1001/jama.2020.1585
    [41]
    Lala A, Johnson KW, Januzzi JL, et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized With COVID-19 Infection. J Am Coll Cardiol 2020; 76: 533−546. doi: 10.1016/j.jacc.2020.06.007
    [42]
    Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am Coll Cardiol 2020; 75: 2352−2371.
    [43]
    Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020; 17: 1463−1471. doi: 10.1016/j.hrthm.2020.05.001
    [44]
    Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition). http://kjfy.meetingchina.org/msite/news/show/cn/3337.html (accessed January 24, 2021).
    [45]
    Ammirati E, Wang DW. SARS-CoV-2 inflames the heart. The importance of awareness of myocardial injury in COVID-19 patients. Int J Cardiol 2020; 311: 122−123. doi: 10.1016/j.ijcard.2020.03.086
    [46]
    Fried JA, Kumudha R, Reema B, et al. The Variety of Cardiovascular Presentations of COVID-19. Circulation 2020; 141: 1930−1936. doi: 10.1161/CIRCULATIONAHA.120.047164
    [47]
    Sala S, Peretto G, Gramegna M, et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur Heart J 2020; 41: 1861−1862. doi: 10.1093/eurheartj/ehaa286
    [48]
    Musher DM, Abers MS, Corrales-Medina VF. Acute Infection and Myocardial Infarction. N Engl J Med 2019; 380: 171−176. doi: 10.1056/NEJMra1808137
    [49]
    Kwong JC, Schwartz KL, Campitelli MA, et al. Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. N Engl J Med 2018; 378: 345−353. doi: 10.1056/NEJMoa1702090
    [50]
    Liu PP, Blet A, Smyth D, Li H. The Science Underlying COVID-19: Implications for the Cardiovascular System. Circulation 2020; 142: 68−78. doi: 10.1161/CIRCULATIONAHA.120.047549
    [51]
    Harskamp RE, van Ginkel MW. Acute respiratory tract infections: a potential trigger for the acute coronary syndrome. Ann Med 2008; 40: 121−128. doi: 10.1080/07853890701753672
    [52]
    Schiavone M, Gobbi C, Biondi-Zoccai G, et al. Acute Coronary Syndromes and Covid-19: Exploring the Uncertainties. J Clin Med 2020; 9: 1683. doi: 10.3390/jcm9061683
    [53]
    Baldi E, Sechi GM, Mare C, et al. Out-of-Hospital Cardiac Arrest during the Covid-19 Outbreak in Italy. N Engl J Med 2020; 383: 496−498. doi: 10.1056/NEJMc2010418
    [54]
    De Luca G, Verdoia M, Cercek M, et al. Impact of COVID-19 pandemic on mechanical reperfusion for patients with STEMI. J Am Coll Cardiol 2020; 76: 2321−2330. doi: 10.1016/j.jacc.2020.09.546
    [55]
    Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020; 17: 1439−1444. doi: 10.1016/j.hrthm.2020.06.016
    [56]
    Colon CM, Barrios JG, Chiles JW, et al. Atrial Arrhythmias in COVID-19 Patients. JACC Clin Electrophysiol 2020; 6: 1189−1190. doi: 10.1016/j.jacep.2020.05.015
    [57]
    Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091.
    [58]
    Mehra MR, Ruschitzka F. COVID-19 Illness and Heart Failure: A Missing Link? JACC Heart Fail 2020; 8: 512. doi: 10.1016/j.jchf.2020.03.004
    [59]
    Owan TE, Hodge DO, Herges RM, et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251−259. doi: 10.1056/NEJMoa052256
    [60]
    Hogenhuis J, Voors AA, Jaarsma T, et al. Influence of age on natriuretic peptides in patients with chronic heart failure: a comparison between ANP/NT-ANP and BNP/NT-proBNP. Eur J Heart Fail 2005; 7: 81−86. doi: 10.1016/j.ejheart.2004.03.014
    [61]
    Alehagen U, Goetze JP, Dahlström U. Reference intervals and decision limits for B-type natriuretic peptide (BNP) and its precursor (Nt-proBNP) in the elderly. Clin Chim Acta Int J Clin Chem 2007; 382: 8−14. doi: 10.1016/j.cca.2007.03.005
    [62]
    Januzzi JL, van Kimmenade R, Lainchbury J, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 2006; 27: 330−337. doi: 10.1093/eurheartj/ehi631
    [63]
    Vergaro G, Januzzi JL, Solal AC, et al. NT-proBNP prognostic value is maintained in elderly and very elderly patients with chronic systolic heart failure. Int J Cardiol 2018; 271: 324−330. doi: 10.1016/j.ijcard.2018.04.006
    [64]
    Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145−147. doi: 10.1016/j.thromres.2020.04.013
    [65]
    Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J 2020; 41: 3038−3044. doi: 10.1093/eurheartj/ehaa623
    [66]
    Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 2950−2973.
    [67]
    Ranucci M, Sitzia C, Baryshnikova E, et al. COVID-19-Associated Coagulopathy: Biomarkers of Thrombin Generation and Fibrinolysis Leading the Outcome. J Clin Med 2020; 9: 3487. doi: 10.3390/jcm9113487
    [68]
    Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. Heart 2020; 106: 1142−1147. doi: 10.1136/heartjnl-2020-317062
    [69]
    Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020; 41: 2070−2079. doi: 10.1093/eurheartj/ehaa408
    [70]
    Ren B, Yan FF, Deng ZM, et al. Extremely High Incidence of Lower Extremity Deep Venous Thrombosis in 48 Patients With Severe COVID-19 in Wuhan. Circulation 2020; 142: 181−183. doi: 10.1161/CIRCULATIONAHA.120.047407
    [71]
    Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9−14. doi: 10.1016/j.thromres.2020.04.024
    [72]
    Llitjos J, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18: 1743−1746. doi: 10.1111/jth.14869
    [73]
    Bilaloglu S, Aphinyanaphongs Y, Jones S, et al. Thrombosis in Hospitalized Patients With COVID-19 in a New York City Health System. JAMA 2020; 324: 799. doi: 10.1001/jama.2020.13372
    [74]
    Zhang L, Feng X, Zhang D, et al. Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation 2020; 142: 114−128. doi: 10.1161/CIRCULATIONAHA.120.046702
    [75]
    Hippensteel JA, Burnham EL, Jolley SE. Prevalence of venous thromboembolism in critically ill patients with COVID-19. Br J Haematol 2020; 190: e134−e137. doi: 10.1111/bjh.16646
    [76]
    Menter T, Haslbauer JD, Nienhold R, et al. Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020; 77: 198−209. doi: 10.1111/his.14134
    [77]
    Birocchi S, Manzoni M, Podda GM, et al. High rates of pulmonary artery occlusions in COVID-19. A meta-analysis. Eur J Clin Invest 2021; 51: e13433.
    [78]
    Levi M, Toh CH, Thachil J, Watson HG. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol 2009; 145: 24−33. doi: 10.1111/j.1365-2141.2009.07600.x
    [79]
    Information on COVID-19 Treatment, Prevention and Research. COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/ (access on January 8, 2021).
    [80]
    The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19 — Preliminary Report. N Engl J Med 2020: NEJMoa2021436.
    [81]
    Ben Dhaou B, Boussema F, Aydi Z, Baili L, Tira H, Cherif O, et al. Corticoid-associated complications in elderly. Tunis Med 2012; 90: 774−777.
    [82]
    Silverman HS, Pfeifer MP. Relation between use of anti-inflammatory agents and left ventricular free wall rupture during acute myocardial infarction. Am J Cardiol 1987; 59: 363−364. doi: 10.1016/0002-9149(87)90817-4
    [83]
    Flaczyk A, Rosovsky RP, Reed CT, et al. Comparison of published guidelines for management of coagulopathy and thrombosis in critically ill patients with COVID 19: implications for clinical practice and future investigations. Crit Care 2020; 24: 559. doi: 10.1186/s13054-020-03273-y
    [84]
    Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18: 1094−1099. doi: 10.1111/jth.14817
    [85]
    Li X, Ma X. The role of heparin in sepsis: much more than just an anticoagulant. Br J Haematol 2017; 179: 389−398. doi: 10.1111/bjh.14885
    [86]
    Tritschler T, Mathieu ME, Skeith L, et al. Anticoagulant interventions in hospitalized patients with COVID-19: A scoping review of randomized controlled trials and call for international collaboration. J Thromb Haemost JTH 2020; 18: 2958−2967. doi: 10.1111/jth.15094
    [87]
    COVID-19 Anticoagulation Trials ‘Paused’ for Futility, Safety. Medscape. http://www.medscape.com/viewarticle/943085 (accessed on January 8, 2021).
    [88]
    Ferrario CM, Jewell J, Chappell MC, et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation 2005; 111: 2605−2610. doi: 10.1161/CIRCULATIONAHA.104.510461
    [89]
    Kuster GM, Pfister O, Burkard T, et al. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur Heart J 2020; 41: 1801−1803. doi: 10.1093/eurheartj/ehaa235
    [90]
    Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Covid-19. N Engl J Med 2020; 382: 2441−2448. doi: 10.1056/NEJMoa2008975
    [91]
    Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone System Blockers and the Risk of Covid-19. N Engl J Med 2020; 382: 2431−2440. doi: 10.1056/NEJMoa2006923
    [92]
    Mehta N, Kalra A, Nowacki AS, et al. Association of Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1020. doi: 10.1001/jamacardio.2020.1855
    [93]
    Adamo M, Lombardi CM, Metra M. June 2020 at a glance: focus on COVID-19, quality of life and comorbidities. Eur J Heart Fail 2020; 22: 917−918. doi: 10.1002/ejhf.1515
    [94]
    Han YL, Li YM, Ma CS. Scientific statement of the Chinese Society of Cardiology (CSC) on using of renin angiotensin system blockers in patients with cardiovascular disease and COVID-19. J Geriatr Cardiol 2020; 17: 241−242.
    [95]
    Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA 2020; 323: 1582. doi: 10.1001/jama.2020.4783
    [96]
    Valk SJ, Piechotta V, Chai KL, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a rapid review. Cochrane Database Syst Rev 2020; 5: CD013600.
    [97]
    Simonovich VA, Burgos Pratx LD, Scibona P, et al. A Randomized Trial of Convalescent Plasma in Covid-19 Severe Pneumonia. N Engl J Med 2021; 384: 619−629. doi: 10.1056/NEJMoa2031304
    [98]
    Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020: 371.
    [99]
    Deng W, Bao L, Liu J, et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 2020; 369: 818−823. doi: 10.1126/science.abc5343
    [100]
    Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369: 77−81. doi: 10.1126/science.abc1932
    [101]
    Addetia A, Crawford KHD, Dingens A, et al. Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. J Clin Microbiol 2020; 58: e02107−e02120.
    [102]
    Dong Y, Dai T, Wei Y, et al. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5: 1−14. doi: 10.1038/s41392-019-0089-y
    [103]
    Walsh EE, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med 2020; 383: 2439−2450. doi: 10.1056/NEJMoa2027906
    [104]
    Anderson EJ, Rouphael NG, Widge AT, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med 2020; 383: 2427−2438. doi: 10.1056/NEJMoa2028436
    [105]
    Heberto AB, Carlos PCJ, Antonio CRJ, et al. Implications of myocardial injury in Mexican hospitalized patients with coronavirus disease 2019 (COVID-19). IJC Heart Vasc 2020; 30: 100638. doi: 10.1016/j.ijcha.2020.100638
    [106]
    Arcari L, Luciani M, Cacciotti L, et al. Incidence and determinants of high-sensitivity troponin and natriuretic peptides elevation at admission in hospitalized COVID-19 pneumonia patients. Intern Emerg Med 2020; 15: 1467−1476. doi: 10.1007/s11739-020-02498-7
    [107]
    Cipriani A, Capone F, Donato F, et al. Cardiac injury and mortality in patients with Coronavirus disease 2019 (COVID-19): insights from a mediation analysis. Intern Emerg Med 2020; 16: 419−427.
    [108]
    Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020; 55: 2000524. doi: 10.1183/13993003.00524-2020
    [109]
    Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; 5: 1−8.
    [110]
    Lombardi CM, Carubelli V, Iorio A, et al. Association of Troponin Levels With Mortality in Italian Patients Hospitalized With Coronavirus Disease 2019: Results of a Multicenter Study. JAMA Cardiol 2020; 5: 1274. doi: 10.1001/jamacardio.2020.3538
    [111]
    Lorente-Ros A, Ruiz JMM, Rincón LM, et al. Myocardial injury determination improves risk stratification and predicts mortality in COVID-19 patients. Cardiol J 2020; 27: 489−496.
    [112]
    Karbalai Saleh S, Oraii A, Soleimani A, et al. The association between cardiac injury and outcomes in hospitalized patients with COVID-19. Intern Emerg Med 2020; 15: 1415−1424. doi: 10.1007/s11739-020-02466-1
    [113]
    Majure DT, Gruberg L, Saba SG, et al. Usefulness of Elevated Troponin to Predict Death in Patients With COVID-19 and Myocardial Injury. Am J Cardiol 2021; 138: 100−106. doi: 10.1016/j.amjcard.2020.09.060
    [114]
    Nie SF, Yu M, Xie T, et al. Cardiac Troponin I Is an Independent Predictor for Mortality in Hospitalized Patients With COVID-19. Circulation 2020; 142: 608−610.
    [115]
    Qin JJ, Cheng X, Zhou F, et al. Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19. Hypertens Dallas Tex 2020; 76: 1104−1112. doi: 10.1161/HYPERTENSIONAHA.120.15528
    [116]
    Stefanini GG, Chiarito M, Ferrante G, et al. Early detection of elevated cardiac biomarkers to optimise risk stratification in patients with COVID-19. Heart 2020; 106: 1512−1518. doi: 10.1136/heartjnl-2020-317322
    [117]
    Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5: 802. doi: 10.1001/jamacardio.2020.0950
    [118]
    Tan WP, Zhu Y, Yi H, et al. Development a Nomogram to Predict Prognosis in Severe and Critically Ill Patients with COVID-19. DOI: 10.21203/rs.3.rs-34264/v1.
    [119]
    Wei JF, Huang FY, Xiong TY, et al. Acute myocardial injury is common in patients with COVID-19 and impairs their prognosis. Heart Br Card Soc 2020; 106: 1154−1159.
    [120]
    Woo SH, Rios-Diaz AJ, Kubey AA, et al. Development and Validation of a Web-Based Severe COVID-19 Risk Prediction Model. Am J Med Sci 2021; Published online first: May 21, 2021; DOI: 10.1016/j.amjms.2021.04.001.
    [121]
    Yang S, Ma L, Wang YL, et al. Risk factors for critical ill events of patients with COVID-19 in Wuhan, China: a retrospective cohort study. medRxiv 2020.06.14.20130765; DOI: https://doi.org/10.1101/2020.06.14.20130765.
    [122]
    Criel M, Falter M, Jaeken J, et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? Published online first: Jul 30, 2020; DOI: 10.1183/13993003.01201–2020.
    [123]
    Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost JTH 2020; 18: 1421−1424. doi: 10.1111/jth.14830
    [124]
    Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res 2020; 192: 23−26. doi: 10.1016/j.thromres.2020.05.018
    [125]
    Desborough MJR, Doyle AJ, Griffiths A, et al. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb Res 2020; 193: 1−4. doi: 10.1016/j.thromres.2020.05.049
    [126]
    Dubois-Silva Á, Barbagelata-López C, Mena Á, et al. Pulmonary embolism and screening for concomitant proximal deep vein thrombosis in noncritically ill hospitalized patients with coronavirus disease 2019. Intern Emerg Med 2020; 15: 865−870. doi: 10.1007/s11739-020-02416-x
    [127]
    Fraissé M, Logre E, Pajot O, et al. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care 2020; 24: 275. doi: 10.1186/s13054-020-03025-y
    [128]
    Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46: 1089−1098. doi: 10.1007/s00134-020-06062-x
    [129]
    Koleilat I, Galen B, Choinski K, et al. Clinical characteristics of acute lower extremity deep venous thrombosis diagnosed by duplex in patients hospitalized for coronavirus disease 2019. J Vasc Surg Venous Lymphat Disord 2021; 9: 36−46. doi: 10.1016/j.jvsv.2020.06.012
    [130]
    Longchamp A, Longchamp J, Manzocchi-Besson S, et al. Venous thromboembolism in critically Ill patients with COVID-19: Results of a screening study for deep vein thrombosis. Res Pract Thromb Haemost 2020; 4: 842−847. doi: 10.1002/rth2.12376
    [131]
    Mestre-Gómez B, Lorente-Ramos RM, Rogado J, et al. Incidence of pulmonary embolism in non-critically ill COVID-19 patients. Predicting factors for a challenging diagnosis. J Thromb Thrombolysis 2020: 1−7.
    [132]
    Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020; 18: 1995−2002. doi: 10.1111/jth.14888
    [133]
    Nahum J, Morichau-Beauchant T, Daviaud F, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open 2020; 3: e2010478. doi: 10.1001/jamanetworkopen.2020.10478
    [134]
    Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020; 142: 184−186. doi: 10.1161/CIRCULATIONAHA.120.047430
    [135]
    Soumagne T, Lascarrou JB, Hraiech S, et al. Factors Associated With Pulmonary Embolism Among Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: A Multicenter Study Among 375 Patients. Crit Care Explor 2020; 2: e0166. doi: 10.1097/CCE.0000000000000166
    [136]
    Tavazzi G, Civardi L, Caneva L, et al. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening. Intensive Care Med 2020; 46: 1121−1123. doi: 10.1007/s00134-020-06040-3
    [137]
    Thomas W, Varley J, Johnston A, et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thromb Res 2020; 191: 76−77. doi: 10.1016/j.thromres.2020.04.028
    [138]
    Wang W. Analysis of Risk Factors for the Thromboembolic Events from 88 Patients with COVID-19 Pneumonia in Wuhan, China: A Retrospective Report. Med Sci Monit 2021; 27: e929708.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (621) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return